
UCID-19631,19632,19633

SLATEC3 (DACOSH through DS2Y)

SLATEC3 (DACOSH through DS2Y) - 1

Table of Contents

Preface 8
Introduction 9

Using SLATEC Documentation 9
Loading SLATEC Under UNICOS 9

Subroutine Descriptions 11
DACOSH 11
DAI 12
DAIE 13
DASINH 14
DASUM 15
DATANH 16
DAVINT 17
DAWS 19
DAXPY 20
DBCG 21
DBESI 26
DBESI0 28
DBESI1 29
DBESJ 30
DBESJ0 32
DBESJ1 33
DBESK 34
DBESK0 36
DBESK1 37
DBESKS 38
DBESY 39
DBESY0 41
DBESY1 42
DBETA 43
DBETAI 44
DBFQAD 45
DBHIN 47
DBI 50
DBIE 51
DBINOM 53
DBINT4 54
DBINTK 56
DBNDAC 58
DBNDSL 62
DBOCLS 66
DBOLS 75
DBSI0E 82
DBSI1E 83

SLATEC3 (DACOSH through DS2Y) - 2

DBSK0E 84
DBSK1E 85
DBSKES 86
DBSKIN 87
DBSPDR 89
DBSPEV 91
DBSPPP 93
DBSPVD 95
DBSPVN 97
DBSQAD 99
DBVALU 100
DBVSUP 102
DCBRT 109
DCDOT 110
DCG 111
DCGN 116
DCGS 121
DCHDC 126
DCHDD 128
DCHEX 131
DCHFDV 134
DCHFEV 136
DCHU 138
DCHUD 139
DCKDER 141
DCOPY 143
DCOPYM 144
DCOSDG 145
DCOT 146
DCOV 147
DCPPLT 150
DCSEVL 153
DCV 154
DDASSL 156
DDAWS 172
DDEABM 173
DDEBDF 183
DDERKF 196
DDOT 207
DDRIV1 208
DDRIV2 213
DDRIV3 219
DE1 232
DEABM 234
DEBDF 244
DEFC 257

SLATEC3 (DACOSH through DS2Y) - 3

DEI 261
DERF 262
DERFC 263
DERKF 264
DEXINT 274
DEXPRL 276
DFAC 277
DFC 278
DFZERO 285
DGAMI 287
DGAMIC 288
DGAMIT 289
DGAMLM 290
DGAMMA 291
DGAMR 292
DGAUS8 293
DGBCO 295
DGBDI 298
DGBFA 300
DGBMV 302
DGBSL 305
DGECO 307
DGEDI 309
DGEFA 311
DGEFS 313
DGEMM 315
DGEMV 318
DGER 320
DGESL 322
DGLSS 324
DGMRES 327
DGTSL 334
DHFTI 336
DINTP 339
DINTRV 340
DIR 342
DLBETA 347
DLGAMS 348
DLI 349
DLLSIA 350
DLLTI2 353
DLNGAM 355
DLNREL 356
DLPDOC 357
DLSEI 365
DNBCO 372

SLATEC3 (DACOSH through DS2Y) - 4

DNBDI 375
DNBFA 376
DNBFS 378
DNBSL 381
DNLS1 383
DNLS1E 394
DNRM2 403
DNSQ 405
DNSQE 413
DOMN 419
DP1VLU 424
DPBCO 425
DPBDI 427
DPBFA 428
DPBSL 430
DPCHBS 432
DPCHCM 435
DPCHFD 438
DPCHFE 441
DPCHIA 443
DPCHIC 445
DPCHID 449
DPCHIM 451
DPCHSP 454
DPCOEF 457
DPFQAD 458
DPLINT 460
DPOCH 461
DPOCH1 462
DPOCO 463
DPODI 465
DPOFA 467
DPOFS 468
DPOLCF 470
DPOLFT 472
DPOLVL 475
DPOSL 477
DPPCO 479
DPPDI 481
DPPERM 483
DPPFA 484
DPPQAD 486
DPPSL 487
DPPVAL 489
DPSI 491
DPSIFN 492

SLATEC3 (DACOSH through DS2Y) - 5

DPSORT 494
DPTSL 496
DQAG 497
DQAGE 500
DQAGI 503
DQAGIE 506
DQAGP 509
DQAGPE 513
DQAGS 517
DQAGSE 520
DQAWC 523
DQAWCE 526
DQAWF 529
DQAWFE 533
DQAWO 537
DQAWOE 541
DQAWS 545
DQAWSE 548
DQC25C 551
DQC25F 553
DQC25S 555
DQDOTA 557
DQDOTI 559
DQK15 561
DQK15I 563
DQK15W 565
DQK21 567
DQK31 569
DQK41 571
DQK51 573
DQK61 575
DQMOMO 577
DQNC79 579
DQNG 581
DQRDC 583
DQRSL 585
DRC 588
DRC3JJ 593
DRC3JM 596
DRC6J 599
DRD 602
DRF 608
DRJ 613
DROT 618
DROTG 619
DROTM 621

SLATEC3 (DACOSH through DS2Y) - 6

DROTMG 623
DS2LT 625
DS2Y 627

Disclaimer 630
Structural Keyword Index 631
Date and Revisions 636

SLATEC3 (DACOSH through DS2Y) - 7

Preface

Scope: SLATEC3 contains brief descriptions ("prologues") for the SLATEC (version 4.1)
mathematical library subroutines with names from DACOSH through DS2Y.

Availability: The SLATEC library is downloadable through LINMath (URL:
http://www.llnl.gov/LCdocs/nmg1) and can be run on all LC production computers.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.scf.cln).

Printing: The print file for this document can be found at:

on the OCF: http://www.llnl.gov/LCdocs/slatec3/slatec3.pdf
on the SCF: https://lc.llnl.gov/LCdocs/slatec3/slatec3_scf.pdf

SLATEC3 (DACOSH through DS2Y) - 8

http://www.llnl.gov/LCdocs/nmg1
http://www.llnl.gov/LCdocs/slatec3/slatec3.pdf

Introduction

Using SLATEC Documentation
Over 1600 pages of online documentation describe the 902 user-callable subroutines available in version

4.1 of the SLATEC library. Because of this unwieldy bulk, the documentation is published in five separate,
but interrelated, volumes:

SLATEC1 provides introductory information on the whole library, explains the subject categories
into which the SLATEC routines are grouped, and includes short descriptions of all
routines (alphabetical within each subject category). Every category code is also a
link (keyword) for retrieving the brief descriptions of the included routines. SLATEC1
provides the only way to compare related routines by the tasks they perform, rather
than just by name.

SLATEC2 contains the calling sequence and usage details for each of the 225 subroutines from
AAAAAA through D9UPAK, arranged alphabetically by name. Every subroutine
name is also a link (keyword) for retrieving the corresponding description if you start
at the index.

SLATEC3 (THIS DOCUMENT) contains the calling sequence and usage details for each of the
225 subroutines from DACOSH through DS2Y, arranged alphabetically by name.
Every subroutine name is also a link (keyword) for retrieving the corresponding
description if you start at the index.

SLATEC4 contains the calling sequence and usage details for each of the 226 subroutines from
DSBMV through RD, arranged alphabetically by name. Every subroutine name is
also a link (keyword) for retrieving the corresponding description if you start at the
index.

SLATEC5 contains the calling sequence and usage details for each of the 226 subroutines from
REBAK through ZBIRY, arranged alphabetically by name. Every subroutine name
is also a link (keyword) for retrieving the corresponding description if you start at the
index.

You can consult any of these documents from any open machine by running your choice of WWW
client and selecting the document you want from the descriptive LC collection directory available at . Or
you can specifically request the URL

 http://www.llnl.gov/LCdocs/slatecn

where slatecn is any one of slatec1 through slatec5, depending on which volume you want.

Loading SLATEC Under UNICOS
On LC machines, the SLATEC math library file is called LIBSLATEC.A and has the full pathname

SLATEC3 (DACOSH through DS2Y) - 9

http://www.llnl.gov/LCdocs/slatec1
http://www.llnl.gov/LCdocs/slatec2
http://www.llnl.gov/LCdocs/slatec3
http://www.llnl.gov/LCdocs/slatec4
http://www.llnl.gov/LCdocs/slatec5

 /usr/local/lib/libslatec.a
The routines in LIBSLATEC.A may use externals in LIBSCI for optimization, and that library is on the
default search path (loaded automatically) under UNICOS.

SLATEC3 (DACOSH through DS2Y) - 10

Subroutine Descriptions

DACOSH

 DOUBLE PRECISION FUNCTION DACOSH (X)
 ***BEGIN PROLOGUE DACOSH
 ***PURPOSE Compute the arc hyperbolic cosine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE DOUBLE PRECISION (ACOSH-S, DACOSH-D, CACOSH-C)
 ***KEYWORDS ACOSH, ARC HYPERBOLIC COSINE, ELEMENTARY FUNCTIONS, FNLIB,
 INVERSE HYPERBOLIC COSINE
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DACOSH(X) calculates the double precision arc hyperbolic cosine for
 double precision argument X. The result is returned on the
 positive branch.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 11

DAI

 DOUBLE PRECISION FUNCTION DAI (X)
 ***BEGIN PROLOGUE DAI
 ***PURPOSE Evaluate the Airy function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10D
 ***TYPE DOUBLE PRECISION (AI-S, DAI-D)
 ***KEYWORDS AIRY FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DAI(X) calculates the double precision Airy function for double
 precision argument X.

 Series for AIF on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 8.37E-33
 log weighted error 32.08
 significant figures required 30.87
 decimal places required 32.63

 Series for AIG on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 7.47E-34
 log weighted error 33.13
 significant figures required 31.50
 decimal places required 33.68

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9AIMP, DAIE, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 12

DAIE

 DOUBLE PRECISION FUNCTION DAIE (X)
 ***BEGIN PROLOGUE DAIE
 ***PURPOSE Calculate the Airy function for a negative argument and an
 exponentially scaled Airy function for a non-negative
 argument.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10D
 ***TYPE DOUBLE PRECISION (AIE-S, DAIE-D)
 ***KEYWORDS EXPONENTIALLY SCALED AIRY FUNCTION, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DAIE(X) calculates the Airy function or the exponentially scaled
 Airy function depending on the value of the argument. The function
 and argument are both double precision.

 Evaluate AI(X) for X .LE. 0.0 and AI(X)*EXP(ZETA) where
 ZETA = 2/3 * X**(3/2) for X .GE. 0.0

 Series for AIF on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 8.37E-33
 log weighted error 32.08
 significant figures required 30.87
 decimal places required 32.63

 Series for AIG on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 7.47E-34
 log weighted error 33.13
 significant figures required 31.50
 decimal places required 33.68

 Series for AIP1 on the interval 1.25000E-01 to 1.00000E+00
 with weighted error 3.69E-32
 log weighted error 31.43
 significant figures required 29.55
 decimal places required 32.31

 Series for AIP2 on the interval 0. to 1.25000E-01
 with weighted error 3.48E-32
 log weighted error 31.46
 significant figures required 28.74
 decimal places required 32.24

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9AIMP, DCSEVL, INITDS
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 13

DASINH

 DOUBLE PRECISION FUNCTION DASINH (X)
 ***BEGIN PROLOGUE DASINH
 ***PURPOSE Compute the arc hyperbolic sine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE DOUBLE PRECISION (ASINH-S, DASINH-D, CASINH-C)
 ***KEYWORDS ARC HYPERBOLIC SINE, ASINH, ELEMENTARY FUNCTIONS, FNLIB,
 INVERSE HYPERBOLIC SINE
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DASINH(X) calculates the double precision arc hyperbolic
 sine for double precision argument X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 14

DASUM

 DOUBLE PRECISION FUNCTION DASUM (N, DX, INCX)
 ***BEGIN PROLOGUE DASUM
 ***PURPOSE Compute the sum of the magnitudes of the elements of a
 vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A3A
 ***TYPE DOUBLE PRECISION (SASUM-S, DASUM-D, SCASUM-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, SUM OF MAGNITUDES OF A VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DX double precision vector with N elements
 INCX storage spacing between elements of DX

 --Output--
 DASUM double precision result (zero if N .LE. 0)

 Returns sum of magnitudes of double precision DX.
 DASUM = sum from 0 to N-1 of ABS(DX(IX+I*INCX)),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 15

DATANH

 DOUBLE PRECISION FUNCTION DATANH (X)
 ***BEGIN PROLOGUE DATANH
 ***PURPOSE Compute the arc hyperbolic tangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE DOUBLE PRECISION (ATANH-S, DATANH-D, CATANH-C)
 ***KEYWORDS ARC HYPERBOLIC TANGENT, ATANH, ELEMENTARY FUNCTIONS,
 FNLIB, INVERSE HYPERBOLIC TANGENT
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DATANH(X) calculates the double precision arc hyperbolic
 tangent for double precision argument X.

 Series for ATNH on the interval 0. to 2.50000E-01
 with weighted error 6.86E-32
 log weighted error 31.16
 significant figures required 30.00
 decimal places required 31.88

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 16

DAVINT

 SUBROUTINE DAVINT (X, Y, N, XLO, XUP, ANS, IERR)
 ***BEGIN PROLOGUE DAVINT
 ***PURPOSE Integrate a function tabulated at arbitrarily spaced
 abscissas using overlapping parabolas.
 ***LIBRARY SLATEC
 ***CATEGORY H2A1B2
 ***TYPE DOUBLE PRECISION (AVINT-S, DAVINT-D)
 ***KEYWORDS INTEGRATION, QUADRATURE, TABULATED DATA
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 DAVINT integrates a function tabulated at arbitrarily spaced
 abscissas. The limits of integration need not coincide
 with the tabulated abscissas.

 A method of overlapping parabolas fitted to the data is used
 provided that there are at least 3 abscissas between the
 limits of integration. DAVINT also handles two special cases.
 If the limits of integration are equal, DAVINT returns a
 result of zero regardless of the number of tabulated values.
 If there are only two function values, DAVINT uses the
 trapezoid rule.

 Description of Parameters
 The user must dimension all arrays appearing in the call list
 X(N), Y(N)

 Input--
 X - DOUBLE PRECISION array of abscissas, which must be in
 increasing order.
 Y - DOUBLE PRECISION array of function values. i.e.,
 Y(I)=FUNC(X(I))
 N - The integer number of function values supplied.
 N .GE. 2 unless XLO = XUP.
 XLO - DOUBLE PRECISION lower limit of integration
 XUP - DOUBLE PRECISION upper limit of integration. Must have
 XLO.LE.XUP

 Output--
 ANS - Double Precision computed approximate value of integral
 IERR - A status code
 --Normal Code
 =1 Means the requested integration was performed.
 --Abnormal Codes
 =2 Means XUP was less than XLO.
 =3 Means the number of X(I) between XLO and XUP
 (inclusive) was less than 3 and neither of the two
 special cases described in the abstract occurred.
 No integration was performed.
 =4 Means the restriction X(I+1).GT.X(I) was violated.
 =5 Means the number N of function values was .lt. 2.
 ANS is set to zero if IERR=2,3,4,or 5.

 DAVINT is documented completely in SC-M-69-335
 Original program from *Numerical Integration* by Davis & Rabinowitz

SLATEC3 (DACOSH through DS2Y) - 17

 Adaptation and modifications by Rondall E Jones.

 ***REFERENCES R. E. Jones, Approximate integrator of functions
 tabulated at arbitrarily spaced abscissas,
 Report SC-M-69-335, Sandia Laboratories, 1969.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 690901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 18

DAWS

 FUNCTION DAWS (X)
 ***BEGIN PROLOGUE DAWS
 ***PURPOSE Compute Dawson's function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C8C
 ***TYPE SINGLE PRECISION (DAWS-S, DDAWS-D)
 ***KEYWORDS DAWSON'S FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DAWS(X) calculates Dawson's integral for real argument X.

 Series for DAW on the interval 0. to 1.00000D+00
 with weighted error 3.83E-17
 log weighted error 16.42
 significant figures required 15.78
 decimal places required 16.97

 Series for DAW2 on the interval 0. to 1.60000D+01
 with weighted error 5.17E-17
 log weighted error 16.29
 significant figures required 15.90
 decimal places required 17.02

 Series for DAWA on the interval 0. to 6.25000D-02
 with weighted error 2.24E-17
 log weighted error 16.65
 significant figures required 14.73
 decimal places required 17.36

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 780401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 19

DAXPY

 SUBROUTINE DAXPY (N, DA, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE DAXPY
 ***PURPOSE Compute a constant times a vector plus a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A7
 ***TYPE DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DA double precision scalar multiplier
 DX double precision vector with N elements
 INCX storage spacing between elements of DX
 DY double precision vector with N elements
 INCY storage spacing between elements of DY

 --Output--
 DY double precision result (unchanged if N .LE. 0)

 Overwrite double precision DY with double precision DA*DX + DY.
 For I = 0 to N-1, replace DY(LY+I*INCY) with DA*DX(LX+I*INCX) +
 DY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 20

DBCG

 SUBROUTINE DBCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
 $ MSOLVE, MTSOLV, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ R, Z, P, RR, ZZ, PP, DZ, RWORK, IWORK)
 ***BEGIN PROLOGUE DBCG
 ***PURPOSE Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
 Routine to solve a Non-Symmetric linear system Ax = b
 using the Preconditioned BiConjugate Gradient method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SBCG-S, DBCG-D)
 ***KEYWORDS BICONJUGATE GRADIENT, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N), P(N)
 DOUBLE PRECISION RR(N), ZZ(N), PP(N), DZ(N)
 DOUBLE PRECISION RWORK(USER DEFINED)
 EXTERNAL MATVEC, MTTVEC, MSOLVE, MTSOLV

 CALL DBCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
 $ MSOLVE, MTSOLV, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ R, Z, P, RR, ZZ, PP, DZ, RWORK, IWORK)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below, for more
 details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 operation Y = A*X given A and X. The name of the MATVEC

SLATEC3 (DACOSH through DS2Y) - 21

 routine must be declared external in the calling program.
 The calling sequence of MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X upon
 return, X is an input vector. NELT, IA, JA, A and ISYM
 define the SLAP matrix data structure: see Description,below.
 MTTVEC :EXT External.
 Name of a routine which performs the matrix transpose vector
 multiply y = A'*X given A and X (where ' denotes transpose).
 The name of the MTTVEC routine must be declared external in
 the calling program. The calling sequence to MTTVEC is the
 same as that for MTTVEC, viz.:
 CALL MTTVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A'*X
 upon return, X is an input vector. NELT, IA, JA, A and ISYM
 define the SLAP matrix data structure: see Description,below.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for Z
 given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine
 must be declared external in the calling program. The
 calling sequence of MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector, and Z is the solution upon return. NELT, IA, JA, A
 and ISYM define the SLAP matrix data structure: see
 Description, below. RWORK is a double precision array that
 can be used to pass necessary preconditioning information and/
 or workspace to MSOLVE. IWORK is an integer work array for
 the same purpose as RWORK.
 MTSOLV :EXT External.
 Name of a routine which solves a linear system M'ZZ = RR for
 ZZ given RR with the preconditioning matrix M (M is supplied
 via RWORK and IWORK arrays). The name of the MTSOLV routine
 must be declared external in the calling program. The call-
 ing sequence to MTSOLV is:
 CALL MTSOLV(N, RR, ZZ, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, RR is the right-hand side
 vector, and ZZ is the solution upon return. NELT, IA, JA, A
 and ISYM define the SLAP matrix data structure: see
 Description, below. RWORK is a double precision array that
 can be used to pass necessary preconditioning information and/
 or workspace to MTSOLV. IWORK is an integer work array for
 the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution

SLATEC3 (DACOSH through DS2Y) - 22

 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Double Precision R(N).
 Z :WORK Double Precision Z(N).
 P :WORK Double Precision P(N).
 RR :WORK Double Precision RR(N).
 ZZ :WORK Double Precision ZZ(N).
 PP :WORK Double Precision PP(N).
 DZ :WORK Double Precision DZ(N).
 Double Precision arrays used for workspace.
 RWORK :WORK Double Precision RWORK(USER DEFINED).
 Double Precision array that can be used for workspace in
 MSOLVE and MTSOLV.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used for workspace in MSOLVE
 and MTSOLV.

 *Description
 This routine does not care what matrix data structure is used
 for A and M. It simply calls MATVEC, MTTVEC, MSOLVE, MTSOLV
 routines, with arguments as above. The user could write any
 type of structure, and appropriate MATVEC, MSOLVE, MTTVEC,
 and MTSOLV routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK in some fashion. The SLAP
 routines DSDBCG and DSLUBC are examples of this procedure.

SLATEC3 (DACOSH through DS2Y) - 23

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================
 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the double pre-
 cision array A. In other words, for each column in the
 matrix first put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
 th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
 are the last elements of the ICOL-th column. Note that we
 always have JA(N+1)=NELT+1, where N is the number of columns
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:

SLATEC3 (DACOSH through DS2Y) - 24

 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSDBCG, DSLUBC
 ***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED D1MACH, DAXPY, DCOPY, DDOT, ISDBCG
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC, MTTVEC, MSOLVE, MTSOLV from ROUTINES
 CALLED list. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 25

DBESI

 SUBROUTINE DBESI (X, ALPHA, KODE, N, Y, NZ)
 ***BEGIN PROLOGUE DBESI
 ***PURPOSE Compute an N member sequence of I Bessel functions
 I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
 EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for nonnegative
 ALPHA and X.
 ***LIBRARY SLATEC
 ***CATEGORY C10B3
 ***TYPE DOUBLE PRECISION (BESI-S, DBESI-D)
 ***KEYWORDS I BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNLA)
 Daniel, S. L., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****
 DBESI computes an N member sequence of I Bessel functions
 I/sub(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
 EXP(-X)*I/sub(ALPHA+K-1)/(X), K=1,...,N for nonnegative ALPHA
 and X. A combination of the power series, the asymptotic
 expansion for X to infinity, and the uniform asymptotic
 expansion for NU to infinity are applied over subdivisions of
 the (NU,X) plane. For values not covered by one of these
 formulae, the order is incremented by an integer so that one
 of these formulae apply. Backward recursion is used to reduce
 orders by integer values. The asymptotic expansion for X to
 infinity is used only when the entire sequence (specifically
 the last member) lies within the region covered by the
 expansion. Leading terms of these expansions are used to test
 for over or underflow where appropriate. If a sequence is
 requested and the last member would underflow, the result is
 set to zero and the next lower order tried, etc., until a
 member comes on scale or all are set to zero. An overflow
 cannot occur with scaling.

 The maximum number of significant digits obtainable
 is the smaller of 14 and the number of digits carried in
 double precision arithmetic.

 Description of Arguments

 Input X,ALPHA are double precision
 X - X .GE. 0.0D0
 ALPHA - order of first member of the sequence,
 ALPHA .GE. 0.0D0
 KODE - a parameter to indicate the scaling option
 KODE=1 returns
 Y(K)= I/sub(ALPHA+K-1)/(X),
 K=1,...,N
 KODE=2 returns
 Y(K)=EXP(-X)*I/sub(ALPHA+K-1)/(X),
 K=1,...,N
 N - number of members in the sequence, N .GE. 1

 Output Y is double precision
 Y - a vector whose first N components contain
 values for I/sub(ALPHA+K-1)/(X) or scaled

SLATEC3 (DACOSH through DS2Y) - 26

 values for EXP(-X)*I/sub(ALPHA+K-1)/(X),
 K=1,...,N depending on KODE
 NZ - number of components of Y set to zero due to
 underflow,
 NZ=0 , normal return, computation completed
 NZ .NE. 0, last NZ components of Y set to zero,
 Y(K)=0.0D0, K=N-NZ+1,...,N.

 Error Conditions
 Improper input arguments - a fatal error
 Overflow with KODE=1 - a fatal error
 Underflow - a non-fatal error(NZ .NE. 0)

 ***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
 subroutines IBESS and JBESS for Bessel functions
 I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
 Transactions on Mathematical Software 3, (1977),
 pp. 76-92.
 F. W. J. Olver, Tables of Bessel Functions of Moderate
 or Large Orders, NPL Mathematical Tables 6, Her
 Majesty's Stationery Office, London, 1962.
 ***ROUTINES CALLED D1MACH, DASYIK, DLNGAM, I1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 27

DBESI0

 DOUBLE PRECISION FUNCTION DBESI0 (X)
 ***BEGIN PROLOGUE DBESI0
 ***PURPOSE Compute the hyperbolic Bessel function of the first kind
 of order zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE DOUBLE PRECISION (BESI0-S, DBESI0-D)
 ***KEYWORDS FIRST KIND, FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESI0(X) calculates the double precision modified (hyperbolic)
 Bessel function of the first kind of order zero and double
 precision argument X.

 Series for BI0 on the interval 0. to 9.00000E+00
 with weighted error 9.51E-34
 log weighted error 33.02
 significant figures required 33.31
 decimal places required 33.65

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DBSI0E, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 28

DBESI1

 DOUBLE PRECISION FUNCTION DBESI1 (X)
 ***BEGIN PROLOGUE DBESI1
 ***PURPOSE Compute the modified (hyperbolic) Bessel function of the
 first kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE DOUBLE PRECISION (BESI1-S, DBESI1-D)
 ***KEYWORDS FIRST KIND, FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESI1(X) calculates the double precision modified (hyperbolic)
 Bessel function of the first kind of order one and double precision
 argument X.

 Series for BI1 on the interval 0. to 9.00000E+00
 with weighted error 1.44E-32
 log weighted error 31.84
 significant figures required 31.45
 decimal places required 32.46

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DBSI1E, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 29

DBESJ

 SUBROUTINE DBESJ (X, ALPHA, N, Y, NZ)
 ***BEGIN PROLOGUE DBESJ
 ***PURPOSE Compute an N member sequence of J Bessel functions
 J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
 and X.
 ***LIBRARY SLATEC
 ***CATEGORY C10A3
 ***TYPE DOUBLE PRECISION (BESJ-S, DBESJ-D)
 ***KEYWORDS J BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNLA)
 Daniel, S. L., (SNLA)
 Weston, M. K., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****
 DBESJ computes an N member sequence of J Bessel functions
 J/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA and X.
 A combination of the power series, the asymptotic expansion
 for X to infinity and the uniform asymptotic expansion for
 NU to infinity are applied over subdivisions of the (NU,X)
 plane. For values of (NU,X) not covered by one of these
 formulae, the order is incremented or decremented by integer
 values into a region where one of the formulae apply. Backward
 recursion is applied to reduce orders by integer values except
 where the entire sequence lies in the oscillatory region. In
 this case forward recursion is stable and values from the
 asymptotic expansion for X to infinity start the recursion
 when it is efficient to do so. Leading terms of the series and
 uniform expansion are tested for underflow. If a sequence is
 requested and the last member would underflow, the result is
 set to zero and the next lower order tried, etc., until a
 member comes on scale or all members are set to zero.
 Overflow cannot occur.

 The maximum number of significant digits obtainable
 is the smaller of 14 and the number of digits carried in
 double precision arithmetic.

 Description of Arguments

 Input X,ALPHA are double precision
 X - X .GE. 0.0D0
 ALPHA - order of first member of the sequence,
 ALPHA .GE. 0.0D0
 N - number of members in the sequence, N .GE. 1

 Output Y is double precision
 Y - a vector whose first N components contain
 values for J/sub(ALPHA+K-1)/(X), K=1,...,N
 NZ - number of components of Y set to zero due to
 underflow,
 NZ=0 , normal return, computation completed
 NZ .NE. 0, last NZ components of Y set to zero,
 Y(K)=0.0D0, K=N-NZ+1,...,N.

 Error Conditions

SLATEC3 (DACOSH through DS2Y) - 30

 Improper input arguments - a fatal error
 Underflow - a non-fatal error (NZ .NE. 0)

 ***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
 subroutines IBESS and JBESS for Bessel functions
 I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
 Transactions on Mathematical Software 3, (1977),
 pp. 76-92.
 F. W. J. Olver, Tables of Bessel Functions of Moderate
 or Large Orders, NPL Mathematical Tables 6, Her
 Majesty's Stationery Office, London, 1962.
 ***ROUTINES CALLED D1MACH, DASYJY, DJAIRY, DLNGAM, I1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 31

DBESJ0

 DOUBLE PRECISION FUNCTION DBESJ0 (X)
 ***BEGIN PROLOGUE DBESJ0
 ***PURPOSE Compute the Bessel function of the first kind of order
 zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10A1
 ***TYPE DOUBLE PRECISION (BESJ0-S, DBESJ0-D)
 ***KEYWORDS BESSEL FUNCTION, FIRST KIND, FNLIB, ORDER ZERO,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESJ0(X) calculates the double precision Bessel function of
 the first kind of order zero for double precision argument X.

 Series for BJ0 on the interval 0. to 1.60000E+01
 with weighted error 4.39E-32
 log weighted error 31.36
 significant figures required 31.21
 decimal places required 32.00

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9B0MP, DCSEVL, INITDS
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 32

DBESJ1

 DOUBLE PRECISION FUNCTION DBESJ1 (X)
 ***BEGIN PROLOGUE DBESJ1
 ***PURPOSE Compute the Bessel function of the first kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10A1
 ***TYPE DOUBLE PRECISION (BESJ1-S, DBESJ1-D)
 ***KEYWORDS BESSEL FUNCTION, FIRST KIND, FNLIB, ORDER ONE,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESJ1(X) calculates the double precision Bessel function of the
 first kind of order one for double precision argument X.

 Series for BJ1 on the interval 0. to 1.60000E+01
 with weighted error 1.16E-33
 log weighted error 32.93
 significant figures required 32.36
 decimal places required 33.57

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9B1MP, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 780601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 910401 Corrected error in code which caused values to have the
 wrong sign for arguments less than 4.0. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 33

DBESK

 SUBROUTINE DBESK (X, FNU, KODE, N, Y, NZ)
 ***BEGIN PROLOGUE DBESK
 ***PURPOSE Implement forward recursion on the three term recursion
 relation for a sequence of non-negative order Bessel
 functions K/SUB(FNU+I-1)/(X), or scaled Bessel functions
 EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
 X and non-negative orders FNU.
 ***LIBRARY SLATEC
 ***CATEGORY C10B3
 ***TYPE DOUBLE PRECISION (BESK-S, DBESK-D)
 ***KEYWORDS K BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****
 DBESK implements forward recursion on the three term
 recursion relation for a sequence of non-negative order Bessel
 functions K/sub(FNU+I-1)/(X), or scaled Bessel functions
 EXP(X)*K/sub(FNU+I-1)/(X), I=1,..,N for real X .GT. 0.0D0 and
 non-negative orders FNU. If FNU .LT. NULIM, orders FNU and
 FNU+1 are obtained from DBSKNU to start the recursion. If
 FNU .GE. NULIM, the uniform asymptotic expansion is used for
 orders FNU and FNU+1 to start the recursion. NULIM is 35 or
 70 depending on whether N=1 or N .GE. 2. Under and overflow
 tests are made on the leading term of the asymptotic expansion
 before any extensive computation is done.

 The maximum number of significant digits obtainable
 is the smaller of 14 and the number of digits carried in
 double precision arithmetic.

 Description of Arguments

 Input X,FNU are double precision
 X - X .GT. 0.0D0
 FNU - order of the initial K function, FNU .GE. 0.0D0
 KODE - a parameter to indicate the scaling option
 KODE=1 returns Y(I)= K/sub(FNU+I-1)/(X),
 I=1,...,N
 KODE=2 returns Y(I)=EXP(X)*K/sub(FNU+I-1)/(X),
 I=1,...,N
 N - number of members in the sequence, N .GE. 1

 Output Y is double precision
 Y - a vector whose first N components contain values
 for the sequence
 Y(I)= k/sub(FNU+I-1)/(X), I=1,...,N or
 Y(I)=EXP(X)*K/sub(FNU+I-1)/(X), I=1,...,N
 depending on KODE
 NZ - number of components of Y set to zero due to
 underflow with KODE=1,
 NZ=0 , normal return, computation completed
 NZ .NE. 0, first NZ components of Y set to zero
 due to underflow, Y(I)=0.0D0, I=1,...,NZ

 Error Conditions

SLATEC3 (DACOSH through DS2Y) - 34

 Improper input arguments - a fatal error
 Overflow - a fatal error
 Underflow with KODE=1 - a non-fatal error (NZ .NE. 0)

 ***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate
 or Large Orders, NPL Mathematical Tables 6, Her
 Majesty's Stationery Office, London, 1962.
 N. M. Temme, On the numerical evaluation of the modified
 Bessel function of the third kind, Journal of
 Computational Physics 19, (1975), pp. 324-337.
 ***ROUTINES CALLED D1MACH, DASYIK, DBESK0, DBESK1, DBSK0E, DBSK1E,
 DBSKNU, I1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790201 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 35

DBESK0

 DOUBLE PRECISION FUNCTION DBESK0 (X)
 ***BEGIN PROLOGUE DBESK0
 ***PURPOSE Compute the modified (hyperbolic) Bessel function of the
 third kind of order zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE DOUBLE PRECISION (BESK0-S, DBESK0-D)
 ***KEYWORDS FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESK0(X) calculates the double precision modified (hyperbolic)
 Bessel function of the third kind of order zero for double
 precision argument X. The argument must be greater than zero
 but not so large that the result underflows.

 Series for BK0 on the interval 0. to 4.00000E+00
 with weighted error 3.08E-33
 log weighted error 32.51
 significant figures required 32.05
 decimal places required 33.11

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DBESI0, DBSK0E, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 36

DBESK1

 DOUBLE PRECISION FUNCTION DBESK1 (X)
 ***BEGIN PROLOGUE DBESK1
 ***PURPOSE Compute the modified (hyperbolic) Bessel function of the
 third kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE DOUBLE PRECISION (BESK1-S, DBESK1-D)
 ***KEYWORDS FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESK1(X) calculates the double precision modified (hyperbolic)
 Bessel function of the third kind of order one for double precision
 argument X. The argument must be large enough that the result does
 not overflow and small enough that the result does not underflow.

 Series for BK1 on the interval 0. to 4.00000E+00
 with weighted error 9.16E-32
 log weighted error 31.04
 significant figures required 30.61
 decimal places required 31.64

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DBESI1, DBSK1E, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 37

DBESKS

 SUBROUTINE DBESKS (XNU, X, NIN, BK)
 ***BEGIN PROLOGUE DBESKS
 ***PURPOSE Compute a sequence of modified Bessel functions of the
 third kind of fractional order.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B3
 ***TYPE DOUBLE PRECISION (BESKS-S, DBESKS-D)
 ***KEYWORDS FNLIB, FRACTIONAL ORDER, MODIFIED BESSEL FUNCTION,
 SEQUENCE OF BESSEL FUNCTIONS, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESKS computes a sequence of modified Bessel functions of the third
 kind of order XNU + I at X, where X .GT. 0, XNU lies in (-1,1),
 and I = 0, 1, ... , NIN - 1, if NIN is positive and I = 0, 1, ... ,
 NIN + 1, if NIN is negative. On return, the vector BK(.) contains
 the results at X for order starting at XNU. XNU, X, and BK are
 double precision. NIN is an integer.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DBSKES, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 38

DBESY

 SUBROUTINE DBESY (X, FNU, N, Y)
 ***BEGIN PROLOGUE DBESY
 ***PURPOSE Implement forward recursion on the three term recursion
 relation for a sequence of non-negative order Bessel
 functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
 X and non-negative orders FNU.
 ***LIBRARY SLATEC
 ***CATEGORY C10A3
 ***TYPE DOUBLE PRECISION (BESY-S, DBESY-D)
 ***KEYWORDS SPECIAL FUNCTIONS, Y BESSEL FUNCTION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****
 DBESY implements forward recursion on the three term
 recursion relation for a sequence of non-negative order Bessel
 functions Y/sub(FNU+I-1)/(X), I=1,N for real X .GT. 0.0D0 and
 non-negative orders FNU. If FNU .LT. NULIM, orders FNU and
 FNU+1 are obtained from DBSYNU which computes by a power
 series for X .LE. 2, the K Bessel function of an imaginary
 argument for 2 .LT. X .LE. 20 and the asymptotic expansion for
 X .GT. 20.

 If FNU .GE. NULIM, the uniform asymptotic expansion is coded
 in DASYJY for orders FNU and FNU+1 to start the recursion.
 NULIM is 70 or 100 depending on whether N=1 or N .GE. 2. An
 overflow test is made on the leading term of the asymptotic
 expansion before any extensive computation is done.

 The maximum number of significant digits obtainable
 is the smaller of 14 and the number of digits carried in
 double precision arithmetic.

 Description of Arguments

 Input
 X - X .GT. 0.0D0
 FNU - order of the initial Y function, FNU .GE. 0.0D0
 N - number of members in the sequence, N .GE. 1

 Output
 Y - a vector whose first N components contain values
 for the sequence Y(I)=Y/sub(FNU+I-1)/(X), I=1,N.

 Error Conditions
 Improper input arguments - a fatal error
 Overflow - a fatal error

 ***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate
 or Large Orders, NPL Mathematical Tables 6, Her
 Majesty's Stationery Office, London, 1962.
 N. M. Temme, On the numerical evaluation of the modified
 Bessel function of the third kind, Journal of
 Computational Physics 19, (1975), pp. 324-337.
 N. M. Temme, On the numerical evaluation of the ordinary
 Bessel function of the second kind, Journal of

SLATEC3 (DACOSH through DS2Y) - 39

 Computational Physics 21, (1976), pp. 343-350.
 ***ROUTINES CALLED D1MACH, DASYJY, DBESY0, DBESY1, DBSYNU, DYAIRY,
 I1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800501 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 40

DBESY0

 DOUBLE PRECISION FUNCTION DBESY0 (X)
 ***BEGIN PROLOGUE DBESY0
 ***PURPOSE Compute the Bessel function of the second kind of order
 zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10A1
 ***TYPE DOUBLE PRECISION (BESY0-S, DBESY0-D)
 ***KEYWORDS BESSEL FUNCTION, FNLIB, ORDER ZERO, SECOND KIND,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESY0(X) calculates the double precision Bessel function of the
 second kind of order zero for double precision argument X.

 Series for BY0 on the interval 0. to 1.60000E+01
 with weighted error 8.14E-32
 log weighted error 31.09
 significant figures required 30.31
 decimal places required 31.73

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9B0MP, DBESJ0, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 41

DBESY1

 DOUBLE PRECISION FUNCTION DBESY1 (X)
 ***BEGIN PROLOGUE DBESY1
 ***PURPOSE Compute the Bessel function of the second kind of order
 one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10A1
 ***TYPE DOUBLE PRECISION (BESY1-S, DBESY1-D)
 ***KEYWORDS BESSEL FUNCTION, FNLIB, ORDER ONE, SECOND KIND,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBESY1(X) calculates the double precision Bessel function of the
 second kind of order for double precision argument X.

 Series for BY1 on the interval 0. to 1.60000E+01
 with weighted error 8.65E-33
 log weighted error 32.06
 significant figures required 32.17
 decimal places required 32.71

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9B1MP, DBESJ1, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 42

DBETA

 DOUBLE PRECISION FUNCTION DBETA (A, B)
 ***BEGIN PROLOGUE DBETA
 ***PURPOSE Compute the complete Beta function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7B
 ***TYPE DOUBLE PRECISION (BETA-S, DBETA-D, CBETA-C)
 ***KEYWORDS COMPLETE BETA FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBETA(A,B) calculates the double precision complete beta function
 for double precision arguments A and B.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DGAMLM, DGAMMA, DLBETA, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 43

DBETAI

 DOUBLE PRECISION FUNCTION DBETAI (X, PIN, QIN)
 ***BEGIN PROLOGUE DBETAI
 ***PURPOSE Calculate the incomplete Beta function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7F
 ***TYPE DOUBLE PRECISION (BETAI-S, DBETAI-D)
 ***KEYWORDS FNLIB, INCOMPLETE BETA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBETAI calculates the DOUBLE PRECISION incomplete beta function.

 The incomplete beta function ratio is the probability that a
 random variable from a beta distribution having parameters PIN and
 QIN will be less than or equal to X.

 -- Input Arguments -- All arguments are DOUBLE PRECISION.
 X upper limit of integration. X must be in (0,1) inclusive.
 PIN first beta distribution parameter. PIN must be .GT. 0.0.
 QIN second beta distribution parameter. QIN must be .GT. 0.0.

 ***REFERENCES Nancy E. Bosten and E. L. Battiste, Remark on Algorithm
 179, Communications of the ACM 17, 3 (March 1974),
 pp. 156.
 ***ROUTINES CALLED D1MACH, DLBETA, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 44

DBFQAD

 SUBROUTINE DBFQAD (F, T, BCOEF, N, K, ID, X1, X2, TOL, QUAD, IERR,
 + WORK)
 ***BEGIN PROLOGUE DBFQAD
 ***PURPOSE Compute the integral of a product of a function and a
 derivative of a K-th order B-spline.
 ***LIBRARY SLATEC
 ***CATEGORY H2A2A1, E3, K6
 ***TYPE DOUBLE PRECISION (BFQAD-S, DBFQAD-D)
 ***KEYWORDS INTEGRAL OF B-SPLINE, QUADRATURE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****

 DBFQAD computes the integral on (X1,X2) of a product of a
 function F and the ID-th derivative of a K-th order B-spline,
 using the B-representation (T,BCOEF,N,K). (X1,X2) must be a
 subinterval of T(K) .LE. X .LE. T(N+1). An integration rou-
 tine, DBSGQ8 (a modification of GAUS8), integrates the product
 on subintervals of (X1,X2) formed by included (distinct) knots

 The maximum number of significant digits obtainable in
 DBSQAD is the smaller of 18 and the number of digits
 carried in double precision arithmetic.

 Description of Arguments
 Input F,T,BCOEF,X1,X2,TOL are double precision
 F - external function of one argument for the
 integrand BF(X)=F(X)*DBVALU(T,BCOEF,N,K,ID,X,INBV,
 WORK)
 T - knot array of length N+K
 BCOEF - coefficient array of length N
 N - length of coefficient array
 K - order of B-spline, K .GE. 1
 ID - order of the spline derivative, 0 .LE. ID .LE. K-1
 ID=0 gives the spline function
 X1,X2 - end points of quadrature interval in
 T(K) .LE. X .LE. T(N+1)
 TOL - desired accuracy for the quadrature, suggest
 10.*DTOL .LT. TOL .LE. .1 where DTOL is the maximum
 of 1.0D-18 and double precision unit roundoff for
 the machine = D1MACH(4)

 Output QUAD,WORK are double precision
 QUAD - integral of BF(X) on (X1,X2)
 IERR - a status code
 IERR=1 normal return
 2 some quadrature on (X1,X2) does not meet
 the requested tolerance.
 WORK - work vector of length 3*K

 Error Conditions
 Improper input is a fatal error
 Some quadrature fails to meet the requested tolerance

 ***REFERENCES D. E. Amos, Quadrature subroutines for splines and

SLATEC3 (DACOSH through DS2Y) - 45

 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.
 ***ROUTINES CALLED D1MACH, DBSGQ8, DINTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 46

DBHIN

 SUBROUTINE DBHIN (N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)
 ***BEGIN PROLOGUE DBHIN
 ***PURPOSE Read a Sparse Linear System in the Boeing/Harwell Format.
 The matrix is read in and if the right hand side is also
 present in the input file then it too is read in. The
 matrix is then modified to be in the SLAP Column format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY N1
 ***TYPE DOUBLE PRECISION (SBHIN-S, DBHIN-D)
 ***KEYWORDS LINEAR SYSTEM, MATRIX READ, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT, JOB
 DOUBLE PRECISION A(NELT), SOLN(N), RHS(N)

 CALL DBHIN(N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)

 *Arguments:
 N :OUT Integer
 Order of the Matrix.
 NELT :INOUT Integer.
 On input NELT is the maximum number of non-zeros that
 can be stored in the IA, JA, A arrays.
 On output NELT is the number of non-zeros stored in A.
 IA :OUT Integer IA(NELT).
 JA :OUT Integer JA(NELT).
 A :OUT Double Precision A(NELT).
 On output these arrays hold the matrix A in the SLAP
 Triad format. See "Description", below.
 ISYM :OUT Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 SOLN :OUT Double Precision SOLN(N).
 The solution to the linear system, if present. This array
 is accessed if and only if JOB is set to read it in, see
 below. If the user requests that SOLN be read in, but it is
 not in the file, then it is simply zeroed out.
 RHS :OUT Double Precision RHS(N).
 The right hand side vector. This array is accessed if and
 only if JOB is set to read it in, see below.
 If the user requests that RHS be read in, but it is not in
 the file, then it is simply zeroed out.
 IUNIT :IN Integer.
 Fortran logical I/O device unit number to read the matrix
 from. This unit must be connected in a system dependent
 fashion to a file, or you will get a nasty message
 from the Fortran I/O libraries.
 JOB :INOUT Integer.

SLATEC3 (DACOSH through DS2Y) - 47

 Flag indicating what I/O operations to perform.
 On input JOB indicates what Input operations to try to
 perform.
 JOB = 0 => Read only the matrix.
 JOB = 1 => Read matrix and RHS (if present).
 JOB = 2 => Read matrix and SOLN (if present).
 JOB = 3 => Read matrix, RHS and SOLN (if present).
 On output JOB indicates what operations were actually
 performed.
 JOB = -3 => Unable to parse matrix "CODE" from input file
 to determine if only the lower triangle of matrix
 is stored.
 JOB = -2 => Number of non-zeros (NELT) too large.
 JOB = -1 => System size (N) too large.
 JOB = 0 => Read in only the matrix.
 JOB = 1 => Read in the matrix and RHS.
 JOB = 2 => Read in the matrix and SOLN.
 JOB = 3 => Read in the matrix, RHS and SOLN.
 JOB = 10 => Read in only the matrix *STRUCTURE*, but no
 non-zero entries. Hence, A(*) is not referenced
 and has the return values the same as the input.
 JOB = 11 => Read in the matrix *STRUCTURE* and RHS.
 JOB = 12 => Read in the matrix *STRUCTURE* and SOLN.
 JOB = 13 => Read in the matrix *STRUCTURE*, RHS and SOLN.

 *Description:
 The format for the input is as follows. The first line contains
 a title to identify the data file. On the second line (5I4) are
 counters: NLINE, NPLS, NRILS, NNVLS, NRHSLS.
 NLINE Number of data lines (after the header) in the file.
 NPLS Number of lines for the Column Pointer data in the file.
 NRILS Number of lines for the Row indices in the file.
 NNVLS Number of lines for the Matrix elements in the file.
 NRHSLS Number of lines for the RHS in the file.
 The third line (A3,11X,4I4) contains a symmetry code and some
 additional counters: CODE, NROW, NCOL, NIND, NELE.
 On the fourth line (2A16,2A20) are formats to be used to read
 the following data: PNTFNT, RINFMT, NVLFMT, RHSFMT.
 Following that are the blocks of data in the order indicated.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.

SLATEC3 (DACOSH through DS2Y) - 48

 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Portability:
 You must make sure that IUNIT is a valid Fortran logical
 I/O device unit number and that the unit number has been
 associated with a file or the console. This is a system
 dependent function.

 *Implementation note:
 SOLN is not read by this version. It will simply be
 zeroed out if JOB = 2 or 3 and the returned value of
 JOB will indicate SOLN has not been read.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 881107 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 911122 Added loop to zero out RHS if user wants to read RHS, but
 it's not in the input file. (MKS)
 911125 Minor improvements to prologue. (FNF)
 920511 Added complete declaration section. (WRB)
 921007 Corrected description of input format. (FNF)
 921208 Added Implementation Note and code to zero out SOLN. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 49

DBI

 DOUBLE PRECISION FUNCTION DBI (X)
 ***BEGIN PROLOGUE DBI
 ***PURPOSE Evaluate the Bairy function (the Airy function of the
 second kind).
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10D
 ***TYPE DOUBLE PRECISION (BI-S, DBI-D)
 ***KEYWORDS BAIRY FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBI(X) calculates the double precision Airy function of the
 second kind for double precision argument X.

 Series for BIF on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 1.45E-32
 log weighted error 31.84
 significant figures required 30.85
 decimal places required 32.40

 Series for BIG on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 1.29E-33
 log weighted error 32.89
 significant figures required 31.48
 decimal places required 33.45

 Series for BIF2 on the interval 1.00000E+00 to 8.00000E+00
 with weighted error 6.08E-32
 log weighted error 31.22
 approx significant figures required 30.8
 decimal places required 31.80

 Series for BIG2 on the interval 1.00000E+00 to 8.00000E+00
 with weighted error 4.91E-33
 log weighted error 32.31
 approx significant figures required 31.6
 decimal places required 32.90

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9AIMP, DBIE, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 50

DBIE

 DOUBLE PRECISION FUNCTION DBIE (X)
 ***BEGIN PROLOGUE DBIE
 ***PURPOSE Calculate the Bairy function for a negative argument and an
 exponentially scaled Bairy function for a non-negative
 argument.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10D
 ***TYPE DOUBLE PRECISION (BIE-S, DBIE-D)
 ***KEYWORDS BAIRY FUNCTION, EXPONENTIALLY SCALED, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBIE(X) calculates the double precision Airy function of the
 second kind or the double precision exponentially scaled Airy
 function of the second kind, depending on the value of the
 double precision argument X.

 Evaluate BI(X) for X .LE. 0.0 and BI(X)*EXP(-ZETA) where
 ZETA = 2/3 * X**(3/2) for X .GE. 0.0

 Series for BIF on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 1.45E-32
 log weighted error 31.84
 significant figures required 30.85
 decimal places required 32.40

 Series for BIG on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 1.29E-33
 log weighted error 32.89
 significant figures required 31.48
 decimal places required 33.45

 Series for BIF2 on the interval 1.00000E+00 to 8.00000E+00
 with weighted error 6.08E-32
 log weighted error 31.22
 approx significant figures required 30.8
 decimal places required 31.80

 Series for BIG2 on the interval 1.00000E+00 to 8.00000E+00
 with weighted error 4.91E-33
 log weighted error 32.31
 approx significant figures required 31.6
 decimal places required 32.90

 Series for BIP1 on the interval 1.25000E-01 to 3.53553E-01
 with weighted error 1.06E-32
 log weighted error 31.98
 significant figures required 30.61
 decimal places required 32.81

SLATEC3 (DACOSH through DS2Y) - 51

 Series for BIP2 on the interval 0. to 1.25000E-01
 with weighted error 4.04E-33
 log weighted error 32.39
 significant figures required 31.15
 decimal places required 33.37

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9AIMP, DCSEVL, INITDS
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 52

DBINOM

 DOUBLE PRECISION FUNCTION DBINOM (N, M)
 ***BEGIN PROLOGUE DBINOM
 ***PURPOSE Compute the binomial coefficients.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C1
 ***TYPE DOUBLE PRECISION (BINOM-S, DBINOM-D)
 ***KEYWORDS BINOMIAL COEFFICIENTS, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBINOM(N,M) calculates the double precision binomial coefficient
 for integer arguments N and M. The result is (N!)/((M!)(N-M)!).

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9LGMC, DLNREL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 53

DBINT4

 SUBROUTINE DBINT4 (X, Y, NDATA, IBCL, IBCR, FBCL, FBCR, KNTOPT, T,
 + BCOEF, N, K, W)
 ***BEGIN PROLOGUE DBINT4
 ***PURPOSE Compute the B-representation of a cubic spline
 which interpolates given data.
 ***LIBRARY SLATEC
 ***CATEGORY E1A
 ***TYPE DOUBLE PRECISION (BINT4-S, DBINT4-D)
 ***KEYWORDS B-SPLINE, CUBIC SPLINES, DATA FITTING, INTERPOLATION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****

 DBINT4 computes the B representation (T,BCOEF,N,K) of a
 cubic spline (K=4) which interpolates data (X(I),Y(I)),
 I=1,NDATA. Parameters IBCL, IBCR, FBCL, FBCR allow the
 specification of the spline first or second derivative at
 both X(1) and X(NDATA). When this data is not specified
 by the problem, it is common practice to use a natural
 spline by setting second derivatives at X(1) and X(NDATA)
 to zero (IBCL=IBCR=2,FBCL=FBCR=0.0). The spline is defined
 on T(4) .LE. X .LE. T(N+1) with (ordered) interior knots at
 X(I) values where N=NDATA+2. The knots T(1),T(2),T(3) lie to
 the left of T(4)=X(1) and the knots T(N+2), T(N+3), T(N+4)
 lie to the right of T(N+1)=X(NDATA) in increasing order. If
 no extrapolation outside (X(1),X(NDATA)) is anticipated, the
 knots T(1)=T(2)=T(3)=T(4)=X(1) and T(N+2)=T(N+3)=T(N+4)=
 T(N+1)=X(NDATA) can be specified by KNTOPT=1. KNTOPT=2
 selects a knot placement for T(1), T(2), T(3) to make the
 first 7 knots symmetric about T(4)=X(1) and similarly for
 T(N+2), T(N+3), T(N+4) about T(N+1)=X(NDATA). KNTOPT=3
 allows the user to make his own selection, in increasing
 order, for T(1), T(2), T(3) to the left of X(1) and T(N+2),
 T(N+3), T(N+4) to the right of X(NDATA) in the work array
 W(1) through W(6). In any case, the interpolation on
 T(4) .LE. X .LE. T(N+1) by using function DBVALU is unique
 for given boundary conditions.

 Description of Arguments

 Input X,Y,FBCL,FBCR,W are double precision
 X - X vector of abscissae of length NDATA, distinct
 and in increasing order
 Y - Y vector of ordinates of length NDATA
 NDATA - number of data points, NDATA .GE. 2
 IBCL - selection parameter for left boundary condition
 IBCL = 1 constrain the first derivative at
 X(1) to FBCL
 = 2 constrain the second derivative at
 X(1) to FBCL
 IBCR - selection parameter for right boundary condition
 IBCR = 1 constrain first derivative at
 X(NDATA) to FBCR
 IBCR = 2 constrain second derivative at
 X(NDATA) to FBCR

SLATEC3 (DACOSH through DS2Y) - 54

 FBCL - left boundary values governed by IBCL
 FBCR - right boundary values governed by IBCR
 KNTOPT - knot selection parameter
 KNTOPT = 1 sets knot multiplicity at T(4) and
 T(N+1) to 4
 = 2 sets a symmetric placement of knots
 about T(4) and T(N+1)
 = 3 sets T(I)=W(I) and T(N+1+I)=W(3+I),I=1,3
 where W(I),I=1,6 is supplied by the user
 W - work array of dimension at least 5*(NDATA+2)
 If KNTOPT=3, then W(1),W(2),W(3) are knot values to
 the left of X(1) and W(4),W(5),W(6) are knot
 values to the right of X(NDATA) in increasing
 order to be supplied by the user

 Output T,BCOEF are double precision
 T - knot array of length N+4
 BCOEF - B spline coefficient array of length N
 N - number of coefficients, N=NDATA+2
 K - order of spline, K=4

 Error Conditions
 Improper input is a fatal error
 Singular system of equations is a fatal error

 ***REFERENCES D. E. Amos, Computation with splines and B-splines,
 Report SAND78-1968, Sandia Laboratories, March 1979.
 Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 Carl de Boor, A Practical Guide to Splines, Applied
 Mathematics Series 27, Springer-Verlag, New York,
 1978.
 ***ROUTINES CALLED D1MACH, DBNFAC, DBNSLV, DBSPVD, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 55

DBINTK

 SUBROUTINE DBINTK (X, Y, T, N, K, BCOEF, Q, WORK)
 ***BEGIN PROLOGUE DBINTK
 ***PURPOSE Compute the B-representation of a spline which interpolates
 given data.
 ***LIBRARY SLATEC
 ***CATEGORY E1A
 ***TYPE DOUBLE PRECISION (BINTK-S, DBINTK-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****

 DBINTK is the SPLINT routine of the reference.

 DBINTK produces the B-spline coefficients, BCOEF, of the
 B-spline of order K with knots T(I), I=1,...,N+K, which
 takes on the value Y(I) at X(I), I=1,...,N. The spline or
 any of its derivatives can be evaluated by calls to DBVALU.

 The I-th equation of the linear system A*BCOEF = B for the
 coefficients of the interpolant enforces interpolation at
 X(I), I=1,...,N. Hence, B(I) = Y(I), for all I, and A is
 a band matrix with 2K-1 bands if A is invertible. The matrix
 A is generated row by row and stored, diagonal by diagonal,
 in the rows of Q, with the main diagonal going into row K.
 The banded system is then solved by a call to DBNFAC (which
 constructs the triangular factorization for A and stores it
 again in Q), followed by a call to DBNSLV (which then
 obtains the solution BCOEF by substitution). DBNFAC does no
 pivoting, since the total positivity of the matrix A makes
 this unnecessary. The linear system to be solved is
 (theoretically) invertible if and only if
 T(I) .LT. X(I) .LT. T(I+K), for all I.
 Equality is permitted on the left for I=1 and on the right
 for I=N when K knots are used at X(1) or X(N). Otherwise,
 violation of this condition is certain to lead to an error.

 Description of Arguments

 Input X,Y,T are double precision
 X - vector of length N containing data point abscissa
 in strictly increasing order.
 Y - corresponding vector of length N containing data
 point ordinates.
 T - knot vector of length N+K
 Since T(1),..,T(K) .LE. X(1) and T(N+1),..,T(N+K)
 .GE. X(N), this leaves only N-K knots (not nec-
 essarily X(I) values) interior to (X(1),X(N))
 N - number of data points, N .GE. K
 K - order of the spline, K .GE. 1

 Output BCOEF,Q,WORK are double precision
 BCOEF - a vector of length N containing the B-spline

SLATEC3 (DACOSH through DS2Y) - 56

 coefficients
 Q - a work vector of length (2*K-1)*N, containing
 the triangular factorization of the coefficient
 matrix of the linear system being solved. The
 coefficients for the interpolant of an
 additional data set (X(I),YY(I)), I=1,...,N
 with the same abscissa can be obtained by loading
 YY into BCOEF and then executing
 CALL DBNSLV (Q,2K-1,N,K-1,K-1,BCOEF)
 WORK - work vector of length 2*K

 Error Conditions
 Improper input is a fatal error
 Singular system of equations is a fatal error

 ***REFERENCES D. E. Amos, Computation with splines and B-splines,
 Report SAND78-1968, Sandia Laboratories, March 1979.
 Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 Carl de Boor, A Practical Guide to Splines, Applied
 Mathematics Series 27, Springer-Verlag, New York,
 1978.
 ***ROUTINES CALLED DBNFAC, DBNSLV, DBSPVN, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 57

DBNDAC

 SUBROUTINE DBNDAC (G, MDG, NB, IP, IR, MT, JT)
 ***BEGIN PROLOGUE DBNDAC
 ***PURPOSE Compute the LU factorization of a banded matrices using
 sequential accumulation of rows of the data matrix.
 Exactly one right-hand side vector is permitted.
 ***LIBRARY SLATEC
 ***CATEGORY D9
 ***TYPE DOUBLE PRECISION (BNDACC-S, DBNDAC-D)
 ***KEYWORDS BANDED MATRIX, CURVE FITTING, LEAST SQUARES
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 These subroutines solve the least squares problem Ax = b for
 banded matrices A using sequential accumulation of rows of the
 data matrix. Exactly one right-hand side vector is permitted.

 These subroutines are intended for the type of least squares
 systems that arise in applications such as curve or surface
 fitting of data. The least squares equations are accumulated and
 processed using only part of the data. This requires a certain
 user interaction during the solution of Ax = b.

 Specifically, suppose the data matrix (A B) is row partitioned
 into Q submatrices. Let (E F) be the T-th one of these
 submatrices where E = (0 C 0). Here the dimension of E is MT by N
 and the dimension of C is MT by NB. The value of NB is the
 bandwidth of A. The dimensions of the leading block of zeros in E
 are MT by JT-1.

 The user of the subroutine DBNDAC provides MT,JT,C and F for
 T=1,...,Q. Not all of this data must be supplied at once.

 Following the processing of the various blocks (E F), the matrix
 (A B) has been transformed to the form (R D) where R is upper
 triangular and banded with bandwidth NB. The least squares
 system Rx = d is then easily solved using back substitution by
 executing the statement CALL DBNDSL(1,...). The sequence of
 values for JT must be nondecreasing. This may require some
 preliminary interchanges of rows and columns of the matrix A.

 The primary reason for these subroutines is that the total
 processing can take place in a working array of dimension MU by
 NB+1. An acceptable value for MU is

 MU = MAX(MT + N + 1),

 where N is the number of unknowns.

 Here the maximum is taken over all values of MT for T=1,...,Q.
 Notice that MT can be taken to be a small as one, showing that
 MU can be as small as N+2. The subprogram DBNDAC processes the
 rows more efficiently if MU is large enough so that each new
 block (C F) has a distinct value of JT.

 The four principle parts of these algorithms are obtained by the

SLATEC3 (DACOSH through DS2Y) - 58

 following call statements

 CALL DBNDAC(...) Introduce new blocks of data.

 CALL DBNDSL(1,...)Compute solution vector and length of
 residual vector.

 CALL DBNDSL(2,...)Given any row vector H solve YR = H for the
 row vector Y.

 CALL DBNDSL(3,...)Given any column vector W solve RZ = W for
 the column vector Z.

 The dots in the above call statements indicate additional
 arguments that will be specified in the following paragraphs.

 The user must dimension the array appearing in the call list..
 G(MDG,NB+1)

 Description of calling sequence for DBNDAC..

 The entire set of parameters for DBNDAC are

 Input.. All Type REAL variables are DOUBLE PRECISION

 G(*,*) The working array into which the user will
 place the MT by NB+1 block (C F) in rows IR
 through IR+MT-1, columns 1 through NB+1.
 See descriptions of IR and MT below.

 MDG The number of rows in the working array
 G(*,*). The value of MDG should be .GE. MU.
 The value of MU is defined in the abstract
 of these subprograms.

 NB The bandwidth of the data matrix A.

 IP Set by the user to the value 1 before the
 first call to DBNDAC. Its subsequent value
 is controlled by DBNDAC to set up for the
 next call to DBNDAC.

 IR Index of the row of G(*,*) where the user is
 to place the new block of data (C F). Set by
 the user to the value 1 before the first call
 to DBNDAC. Its subsequent value is controlled
 by DBNDAC. A value of IR .GT. MDG is considered
 an error.

 MT,JT Set by the user to indicate respectively the
 number of new rows of data in the block and
 the index of the first nonzero column in that
 set of rows (E F) = (0 C 0 F) being processed.

 Output.. All Type REAL variables are DOUBLE PRECISION

 G(*,*) The working array which will contain the
 processed rows of that part of the data
 matrix which has been passed to DBNDAC.

SLATEC3 (DACOSH through DS2Y) - 59

 IP,IR The values of these arguments are advanced by
 DBNDAC to be ready for storing and processing
 a new block of data in G(*,*).

 Description of calling sequence for DBNDSL..

 The user must dimension the arrays appearing in the call list..

 G(MDG,NB+1), X(N)

 The entire set of parameters for DBNDSL are

 Input.. All Type REAL variables are DOUBLE PRECISION

 MODE Set by the user to one of the values 1, 2, or
 3. These values respectively indicate that
 the solution of AX = B, YR = H or RZ = W is
 required.

 G(*,*),MDG, These arguments all have the same meaning and
 NB,IP,IR contents as following the last call to DBNDAC.

 X(*) With mode=2 or 3 this array contains,
 respectively, the right-side vectors H or W of
 the systems YR = H or RZ = W.

 N The number of variables in the solution
 vector. If any of the N diagonal terms are
 zero the subroutine DBNDSL prints an
 appropriate message. This condition is
 considered an error.

 Output.. All Type REAL variables are DOUBLE PRECISION

 X(*) This array contains the solution vectors X,
 Y or Z of the systems AX = B, YR = H or
 RZ = W depending on the value of MODE=1,
 2 or 3.

 RNORM If MODE=1 RNORM is the Euclidean length of the
 residual vector AX-B. When MODE=2 or 3 RNORM
 is set to zero.

 Remarks..

 To obtain the upper triangular matrix and transformed right-hand
 side vector D so that the super diagonals of R form the columns
 of G(*,*), execute the following Fortran statements.

 NBP1=NB+1

 DO 10 J=1, NBP1

 10 G(IR,J) = 0.E0

 MT=1

 JT=N+1

 CALL DBNDAC(G,MDG,NB,IP,IR,MT,JT)

SLATEC3 (DACOSH through DS2Y) - 60

 ***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares
 Problems, Prentice-Hall, Inc., 1974, Chapter 27.
 ***ROUTINES CALLED DH12, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 61

DBNDSL

 SUBROUTINE DBNDSL (MODE, G, MDG, NB, IP, IR, X, N, RNORM)
 ***BEGIN PROLOGUE DBNDSL
 ***PURPOSE Solve the least squares problem for a banded matrix using
 sequential accumulation of rows of the data matrix.
 Exactly one right-hand side vector is permitted.
 ***LIBRARY SLATEC
 ***CATEGORY D9
 ***TYPE DOUBLE PRECISION (BNDSOL-S, DBNDSL-D)
 ***KEYWORDS BANDED MATRIX, CURVE FITTING, LEAST SQUARES
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 These subroutines solve the least squares problem Ax = b for
 banded matrices A using sequential accumulation of rows of the
 data matrix. Exactly one right-hand side vector is permitted.

 These subroutines are intended for the type of least squares
 systems that arise in applications such as curve or surface
 fitting of data. The least squares equations are accumulated and
 processed using only part of the data. This requires a certain
 user interaction during the solution of Ax = b.

 Specifically, suppose the data matrix (A B) is row partitioned
 into Q submatrices. Let (E F) be the T-th one of these
 submatrices where E = (0 C 0). Here the dimension of E is MT by N
 and the dimension of C is MT by NB. The value of NB is the
 bandwidth of A. The dimensions of the leading block of zeros in E
 are MT by JT-1.

 The user of the subroutine DBNDAC provides MT,JT,C and F for
 T=1,...,Q. Not all of this data must be supplied at once.

 Following the processing of the various blocks (E F), the matrix
 (A B) has been transformed to the form (R D) where R is upper
 triangular and banded with bandwidth NB. The least squares
 system Rx = d is then easily solved using back substitution by
 executing the statement CALL DBNDSL(1,...). The sequence of
 values for JT must be nondecreasing. This may require some
 preliminary interchanges of rows and columns of the matrix A.

 The primary reason for these subroutines is that the total
 processing can take place in a working array of dimension MU by
 NB+1. An acceptable value for MU is

 MU = MAX(MT + N + 1),

 where N is the number of unknowns.

 Here the maximum is taken over all values of MT for T=1,...,Q.
 Notice that MT can be taken to be a small as one, showing that
 MU can be as small as N+2. The subprogram DBNDAC processes the
 rows more efficiently if MU is large enough so that each new
 block (C F) has a distinct value of JT.

 The four principle parts of these algorithms are obtained by the

SLATEC3 (DACOSH through DS2Y) - 62

 following call statements

 CALL DBNDAC(...) Introduce new blocks of data.

 CALL DBNDSL(1,...)Compute solution vector and length of
 residual vector.

 CALL DBNDSL(2,...)Given any row vector H solve YR = H for the
 row vector Y.

 CALL DBNDSL(3,...)Given any column vector W solve RZ = W for
 the column vector Z.

 The dots in the above call statements indicate additional
 arguments that will be specified in the following paragraphs.

 The user must dimension the array appearing in the call list..
 G(MDG,NB+1)

 Description of calling sequence for DBNDAC..

 The entire set of parameters for DBNDAC are

 Input.. All Type REAL variables are DOUBLE PRECISION

 G(*,*) The working array into which the user will
 place the MT by NB+1 block (C F) in rows IR
 through IR+MT-1, columns 1 through NB+1.
 See descriptions of IR and MT below.

 MDG The number of rows in the working array
 G(*,*). The value of MDG should be .GE. MU.
 The value of MU is defined in the abstract
 of these subprograms.

 NB The bandwidth of the data matrix A.

 IP Set by the user to the value 1 before the
 first call to DBNDAC. Its subsequent value
 is controlled by DBNDAC to set up for the
 next call to DBNDAC.

 IR Index of the row of G(*,*) where the user is
 the user to the value 1 before the first call
 to DBNDAC. Its subsequent value is controlled
 by DBNDAC. A value of IR .GT. MDG is considered
 an error.

 MT,JT Set by the user to indicate respectively the
 number of new rows of data in the block and
 the index of the first nonzero column in that
 set of rows (E F) = (0 C 0 F) being processed.
 Output.. All Type REAL variables are DOUBLE PRECISION

 G(*,*) The working array which will contain the
 processed rows of that part of the data
 matrix which has been passed to DBNDAC.

 IP,IR The values of these arguments are advanced by
 DBNDAC to be ready for storing and processing

SLATEC3 (DACOSH through DS2Y) - 63

 a new block of data in G(*,*).

 Description of calling sequence for DBNDSL..

 The user must dimension the arrays appearing in the call list..

 G(MDG,NB+1), X(N)

 The entire set of parameters for DBNDSL are

 Input..

 MODE Set by the user to one of the values 1, 2, or
 3. These values respectively indicate that
 the solution of AX = B, YR = H or RZ = W is
 required.

 G(*,*),MDG, These arguments all have the same meaning and
 NB,IP,IR contents as following the last call to DBNDAC.

 X(*) With mode=2 or 3 this array contains,
 respectively, the right-side vectors H or W of
 the systems YR = H or RZ = W.

 N The number of variables in the solution
 vector. If any of the N diagonal terms are
 zero the subroutine DBNDSL prints an
 appropriate message. This condition is
 considered an error.

 Output..

 X(*) This array contains the solution vectors X,
 Y or Z of the systems AX = B, YR = H or
 RZ = W depending on the value of MODE=1,
 2 or 3.

 RNORM If MODE=1 RNORM is the Euclidean length of the
 residual vector AX-B. When MODE=2 or 3 RNORM
 is set to zero.

 Remarks..

 To obtain the upper triangular matrix and transformed right-hand
 side vector D so that the super diagonals of R form the columns
 of G(*,*), execute the following Fortran statements.

 NBP1=NB+1

 DO 10 J=1, NBP1

 10 G(IR,J) = 0.E0

 MT=1

 JT=N+1

 CALL DBNDAC(G,MDG,NB,IP,IR,MT,JT)

 ***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares

SLATEC3 (DACOSH through DS2Y) - 64

 Problems, Prentice-Hall, Inc., 1974, Chapter 27.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 65

DBOCLS

 SUBROUTINE DBOCLS (W, MDW, MCON, MROWS, NCOLS, BL, BU, IND, IOPT,
 + X, RNORMC, RNORM, MODE, RW, IW)
 ***BEGIN PROLOGUE DBOCLS
 ***PURPOSE Solve the bounded and constrained least squares
 problem consisting of solving the equation
 E*X = F (in the least squares sense)
 subject to the linear constraints
 C*X = Y.
 ***LIBRARY SLATEC
 ***CATEGORY K1A2A, G2E, G2H1, G2H2
 ***TYPE DOUBLE PRECISION (SBOCLS-S, DBOCLS-D)
 ***KEYWORDS BOUNDS, CONSTRAINTS, INEQUALITY, LEAST SQUARES, LINEAR
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 **** All INPUT and OUTPUT real variables are DOUBLE PRECISION ****

 This subprogram solves the bounded and constrained least squares
 problem. The problem statement is:

 Solve E*X = F (least squares sense), subject to constraints
 C*X=Y.

 In this formulation both X and Y are unknowns, and both may
 have bounds on any of their components. This formulation
 of the problem allows the user to have equality and inequality
 constraints as well as simple bounds on the solution components.

 This constrained linear least squares subprogram solves E*X=F
 subject to C*X=Y, where E is MROWS by NCOLS, C is MCON by NCOLS.

 The user must have dimension statements of the form

 DIMENSION W(MDW,NCOLS+MCON+1), BL(NCOLS+MCON), BU(NCOLS+MCON),
 * X(2*(NCOLS+MCON)+2+NX), RW(6*NCOLS+5*MCON)
 INTEGER IND(NCOLS+MCON), IOPT(17+NI), IW(2*(NCOLS+MCON))

 (here NX=number of extra locations required for the options; NX=0
 if no options are in use. Also NI=number of extra locations
 for options 1-9.)

 INPUT

 W(MDW,*),MCON,MROWS,NCOLS

 The array W contains the (possibly null) matrix [C:*] followed by
 [E:F]. This must be placed in W as follows:
 [C : *]
 W = []
 [E : F]
 The (*) after C indicates that this data can be undefined. The
 matrix [E:F] has MROWS rows and NCOLS+1 columns. The matrix C is
 placed in the first MCON rows of W(*,*) while [E:F]
 follows in rows MCON+1 through MCON+MROWS of W(*,*). The vector F

SLATEC3 (DACOSH through DS2Y) - 66

 is placed in rows MCON+1 through MCON+MROWS, column NCOLS+1. The
 values of MDW and NCOLS must be positive; the value of MCON must
 be nonnegative. An exception to this occurs when using option 1
 for accumulation of blocks of equations. In that case MROWS is an
 OUTPUT variable only, and the matrix data for [E:F] is placed in
 W(*,*), one block of rows at a time. See IOPT(*) contents, option
 number 1, for further details. The row dimension, MDW, of the
 array W(*,*) must satisfy the inequality:

 If using option 1,
 MDW .ge. MCON + max(max. number of
 rows accumulated, NCOLS) + 1.
 If using option 8,
 MDW .ge. MCON + MROWS.
 Else
 MDW .ge. MCON + max(MROWS, NCOLS).

 Other values are errors, but this is checked only when using
 option=2. The value of MROWS is an output parameter when
 using option number 1 for accumulating large blocks of least
 squares equations before solving the problem.
 See IOPT(*) contents for details about option 1.

 BL(*),BU(*),IND(*)

 These arrays contain the information about the bounds that the
 solution values are to satisfy. The value of IND(J) tells the
 type of bound and BL(J) and BU(J) give the explicit values for
 the respective upper and lower bounds on the unknowns X and Y.
 The first NVARS entries of IND(*), BL(*) and BU(*) specify
 bounds on X; the next MCON entries specify bounds on Y.

 1. For IND(J)=1, require X(J) .ge. BL(J);
 IF J.gt.NCOLS, Y(J-NCOLS) .ge. BL(J).
 (the value of BU(J) is not used.)
 2. For IND(J)=2, require X(J) .le. BU(J);
 IF J.gt.NCOLS, Y(J-NCOLS) .le. BU(J).
 (the value of BL(J) is not used.)
 3. For IND(J)=3, require X(J) .ge. BL(J) and
 X(J) .le. BU(J);
 IF J.gt.NCOLS, Y(J-NCOLS) .ge. BL(J) and
 Y(J-NCOLS) .le. BU(J).
 (to impose equality constraints have BL(J)=BU(J)=
 constraining value.)
 4. For IND(J)=4, no bounds on X(J) or Y(J-NCOLS) are required.
 (the values of BL(J) and BU(J) are not used.)

 Values other than 1,2,3 or 4 for IND(J) are errors. In the case
 IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J)
 is an error. The values BL(J), BU(J), J .gt. NCOLS, will be
 changed. Significant changes mean that the constraints are
 infeasible. (Users must make this decision themselves.)
 The new values for BL(J), BU(J), J .gt. NCOLS, define a
 region such that the perturbed problem is feasible. If users
 know that their problem is feasible, this step can be skipped
 by using option number 8 described below.
 See IOPT(*) description.

SLATEC3 (DACOSH through DS2Y) - 67

 IOPT(*)

 This is the array where the user can specify nonstandard options
 for DBOCLS(). Most of the time this feature can be ignored by
 setting the input value IOPT(1)=99. Occasionally users may have
 needs that require use of the following subprogram options. For
 details about how to use the options see below: IOPT(*) CONTENTS.

 Option Number Brief Statement of Purpose
 ------ ------ ----- --------- -- -------
 1 Return to user for accumulation of blocks
 of least squares equations. The values
 of IOPT(*) are changed with this option.
 The changes are updates to pointers for
 placing the rows of equations into position
 for processing.
 2 Check lengths of all arrays used in the
 subprogram.
 3 Column scaling of the data matrix, [C].
 [E]
 4 User provides column scaling for matrix [C].
 [E]
 5 Provide option array to the low-level
 subprogram SBOLS().
 6 Provide option array to the low-level
 subprogram SBOLSM().
 7 Move the IOPT(*) processing pointer.
 8 Do not preprocess the constraints to
 resolve infeasibilities.
 9 Do not pretriangularize the least squares matrix.
 99 No more options to change.

 X(*)

 This array is used to pass data associated with options 4,5 and
 6. Ignore this parameter (on input) if no options are used.
 Otherwise see below: IOPT(*) CONTENTS.

 OUTPUT

 X(*),RNORMC,RNORM

 The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for
 the constrained least squares problem. The value RNORMC is the
 minimum residual vector length for the constraints C*X - Y = 0.
 The value RNORM is the minimum residual vector length for the
 least squares equations. Normally RNORMC=0, but in the case of
 inconsistent constraints this value will be nonzero.
 The values of X are returned in the first NVARS entries of X(*).
 The values of Y are returned in the last MCON entries of X(*).

 MODE

 The sign of MODE determines whether the subprogram has completed

SLATEC3 (DACOSH through DS2Y) - 68

 normally, or encountered an error condition or abnormal status. A
 value of MODE .ge. 0 signifies that the subprogram has completed
 normally. The value of mode (.ge. 0) is the number of variables
 in an active status: not at a bound nor at the value zero, for
 the case of free variables. A negative value of MODE will be one
 of the cases (-57)-(-41), (-37)-(-22), (-19)-(-2). Values .lt. -1
 correspond to an abnormal completion of the subprogram. These
 error messages are in groups for the subprograms DBOCLS(),
 SBOLSM(), and SBOLS(). An approximate solution will be returned
 to the user only when max. iterations is reached, MODE=-22.

 RW(*),IW(*)

 These are working arrays. (normally the user can ignore the
 contents of these arrays.)

 IOPT(*) CONTENTS
 ------- --------
 The option array allows a user to modify some internal variables
 in the subprogram without recompiling the source code. A central
 goal of the initial software design was to do a good job for most
 people. Thus the use of options will be restricted to a select
 group of users. The processing of the option array proceeds as
 follows: a pointer, here called LP, is initially set to the value
 1. At the pointer position the option number is extracted and
 used for locating other information that allows for options to be
 changed. The portion of the array IOPT(*) that is used for each
 option is fixed; the user and the subprogram both know how many
 locations are needed for each option. The value of LP is updated
 for each option based on the amount of storage in IOPT(*) that is
 required. A great deal of error checking is done by the
 subprogram on the contents of the option array. Nevertheless it
 is still possible to give the subprogram optional input that is
 meaningless. For example option 4 uses the locations
 X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing scaling data.
 The user must manage the allocation of these locations.

 1
 -
 This option allows the user to solve problems with a large number
 of rows compared to the number of variables. The idea is that the
 subprogram returns to the user (perhaps many times) and receives
 new least squares equations from the calling program unit.
 Eventually the user signals "that's all" and a solution is then
 computed. The value of MROWS is an output variable when this
 option is used. Its value is always in the range 0 .le. MROWS
 .le. NCOLS+1. It is the number of rows after the
 triangularization of the entire set of equations. If LP is the
 processing pointer for IOPT(*), the usage for the sequential
 processing of blocks of equations is

 IOPT(LP)=1
 Move block of equations to W(*,*) starting at
 the first row of W(*,*).
 IOPT(LP+3)=# of rows in the block; user defined

 The user now calls DBOCLS() in a loop. The value of IOPT(LP+1)
 directs the user's action. The value of IOPT(LP+2) points to

SLATEC3 (DACOSH through DS2Y) - 69

 where the subsequent rows are to be placed in W(*,*). Both of
 these values are first defined in the subprogram. The user
 changes the value of IOPT(LP+1) (to 2) as a signal that all of
 the rows have been processed.

 .<LOOP
 . CALL DBOCLS()
 . IF(IOPT(LP+1) .EQ. 1) THEN
 . IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED
 . PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN
 . W(*,*) STARTING AT ROW MCON + IOPT(LP+2).
 .
 . IF(THIS IS THE LAST BLOCK OF EQUATIONS) THEN
 . IOPT(LP+1)=2
 .<------CYCLE LOOP
 . ELSE IF (IOPT(LP+1) .EQ. 2) THEN
 <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0
 . ELSE
 . ERROR CONDITION; SHOULD NOT HAPPEN.
 .<END LOOP

 Use of this option adds 4 to the required length of IOPT(*).

 2
 -
 This option is useful for checking the lengths of all arrays used
 by DBOCLS() against their actual requirements for this problem.
 The idea is simple: the user's program unit passes the declared
 dimension information of the arrays. These values are compared
 against the problem-dependent needs within the subprogram. If any
 of the dimensions are too small an error message is printed and a
 negative value of MODE is returned, -41 to -47. The printed error
 message tells how long the dimension should be. If LP is the
 processing pointer for IOPT(*),

 IOPT(LP)=2
 IOPT(LP+1)=Row dimension of W(*,*)
 IOPT(LP+2)=Col. dimension of W(*,*)
 IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*)
 IOPT(LP+4)=Dimension of X(*)
 IOPT(LP+5)=Dimension of RW(*)
 IOPT(LP+6)=Dimension of IW(*)
 IOPT(LP+7)=Dimension of IOPT(*)
 .
 CALL DBOCLS()

 Use of this option adds 8 to the required length of IOPT(*).

 3
 -
 This option can change the type of scaling for the data matrix.
 Nominally each nonzero column of the matrix is scaled so that the
 magnitude of its largest entry is equal to the value ONE. If LP
 is the processing pointer for IOPT(*),

 IOPT(LP)=3
 IOPT(LP+1)=1,2 or 3
 1= Nominal scaling as noted;
 2= Each nonzero column scaled to have length ONE;

SLATEC3 (DACOSH through DS2Y) - 70

 3= Identity scaling; scaling effectively suppressed.
 .
 CALL DBOCLS()

 Use of this option adds 2 to the required length of IOPT(*).

 4
 -
 This options allows the user to provide arbitrary (positive)
 column scaling for the matrix. If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=4
 IOPT(LP+1)=IOFF
 X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1)
 = Positive scale factors for cols. of E.
 .
 CALL DBOCLS()

 Use of this option adds 2 to the required length of IOPT(*)
 and NCOLS to the required length of X(*).

 5
 -
 This option allows the user to provide an option array to the
 low-level subprogram SBOLS(). If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=5
 IOPT(LP+1)= Position in IOPT(*) where option array
 data for SBOLS() begins.
 .
 CALL DBOCLS()

 Use of this option adds 2 to the required length of IOPT(*).

 6
 -
 This option allows the user to provide an option array to the
 low-level subprogram SBOLSM(). If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=6
 IOPT(LP+1)= Position in IOPT(*) where option array
 data for SBOLSM() begins.
 .
 CALL DBOCLS()

 Use of this option adds 2 to the required length of IOPT(*).

 7
 -
 Move the processing pointer (either forward or backward) to the
 location IOPT(LP+1). The processing pointer moves to locations
 LP+2 if option number 7 is used with the value -7. For
 example to skip over locations 3,...,NCOLS+2,

 IOPT(1)=7
 IOPT(2)=NCOLS+3
 (IOPT(I), I=3,...,NCOLS+2 are not defined here.)

SLATEC3 (DACOSH through DS2Y) - 71

 IOPT(NCOLS+3)=99
 CALL DBOCLS()

 CAUTION: Misuse of this option can yield some very hard-to-find
 bugs. Use it with care. It is intended to be used for passing
 option arrays to other subprograms.

 8
 -
 This option allows the user to suppress the algorithmic feature
 of DBOCLS() that processes the constraint equations C*X = Y and
 resolves infeasibilities. The steps normally done are to solve
 C*X - Y = 0 in a least squares sense using the stated bounds on
 both X and Y. Then the "reachable" vector Y = C*X is computed
 using the solution X obtained. Finally the stated bounds for Y are
 enlarged to include C*X. To suppress the feature:

 IOPT(LP)=8
 .
 CALL DBOCLS()

 Use of this option adds 1 to the required length of IOPT(*).

 9
 -
 This option allows the user to suppress the pretriangularizing
 step of the least squares matrix that is done within DBOCLS().
 This is primarily a means of enhancing the subprogram efficiency
 and has little effect on accuracy. To suppress the step, set:

 IOPT(LP)=9
 .
 CALL DBOCLS()

 Use of this option adds 1 to the required length of IOPT(*).

 99
 --
 There are no more options to change.

 Only option numbers -99, -9,-8,...,-1, 1,2,...,9, and 99 are
 permitted. Other values are errors. Options -99,-1,...,-9 mean
 that the respective options 99,1,...,9 are left at their default
 values. An example is the option to suppress the preprocessing of
 constraints:

 IOPT(1)=-8 Option is recognized but not changed
 IOPT(2)=99
 CALL DBOCLS()

 Error Messages for DBOCLS()
 ----- -------- --- --------

 WARNING in...
 DBOCLS(). THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE. THE NUMBER
 OF EFFECTIVE ROWS=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 41

SLATEC3 (DACOSH through DS2Y) - 72

 WARNING IN...
 DBOCLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+
 MCON+1=(I2).
 IN ABOVE MESSAGE, I1= 2
 IN ABOVE MESSAGE, I2= 3
 ERROR NUMBER = 42

 WARNING IN...
 DBOCLS(). THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1)
 MUST BE .GE. NCOLS+MCON=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 43

 WARNING IN...
 DBOCLS(). THE DIMENSION OF X()=(I1) MUST BE
 .GE. THE REQD.LENGTH=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 44

 WARNING IN...
 DBOCLS(). THE .
 DBOCLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS+2*MCON=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 4
 ERROR NUMBER = 46

 WARNING IN...
 DBOCLS(). THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD.
 LEN.=(I2).
 IN ABOVE MESSAGE, I1= 16
 IN ABOVE MESSAGE, I2= 18
 ERROR NUMBER = 47

 WARNING IN...
 DBOCLS(). ISCALE OPTION=(I1) MUST BE 1-3.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 48

 WARNING IN...
 DBOCLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED COLUMN SCALING
 MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 49

 WARNING IN...
 DBOCLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE.
 COMPONENT (I1) NOW = (R1).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= 0.
 ERROR NUMBER = 50

 WARNING IN...
 DBOCLS(). THE OPTION NUMBER=(I1) IS NOT DEFINED.
 IN ABOVE MESSAGE, I1= 1001
 ERROR NUMBER = 51

 WARNING IN...

SLATEC3 (DACOSH through DS2Y) - 73

 DBOCLS(). NO. OF ROWS=(I1) MUST BE .GE. 0 .AND. .LE. MDW-MCON=(I2).
 IN ABOVE MESSAGE, I1= 2
 IN ABOVE MESSAGE, I2= 1
 ERROR NUMBER = 52

 WARNING IN...
 DBOCLS(). MDW=(I1) MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 53

 WARNING IN...
 DBOCLS(). MCON=(I1) MUST BE NONNEGATIVE.
 IN ABOVE MESSAGE, I1= -1
 ERROR NUMBER = 54

 WARNING IN...
 DBOCLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 55

 WARNING IN...
 DBOCLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 0
 ERROR NUMBER = 56

 WARNING IN...
 DBOCLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= .1000000000E+01
 IN ABOVE MESSAGE, R2= 0.
 ERROR NUMBER = 57
 LINEAR CONSTRAINTS, SNLA REPT. SAND82-1517, AUG., (1982).

 ***REFERENCES R. J. Hanson, Linear least squares with bounds and
 linear constraints, Report SAND82-1517, Sandia
 Laboratories, August 1982.
 ***ROUTINES CALLED D1MACH, DASUM, DBOLS, DCOPY, DDOT, DNRM2, DSCAL,
 XERMSG
 ***REVISION HISTORY (YYMMDD)
 821220 DATE WRITTEN
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 910819 Added variable M for MOUT+MCON in reference to DBOLS. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 74

DBOLS

 SUBROUTINE DBOLS (W, MDW, MROWS, NCOLS, BL, BU, IND, IOPT, X,
 + RNORM, MODE, RW, IW)
 ***BEGIN PROLOGUE DBOLS
 ***PURPOSE Solve the problem
 E*X = F (in the least squares sense)
 with bounds on selected X values.
 ***LIBRARY SLATEC
 ***CATEGORY K1A2A, G2E, G2H1, G2H2
 ***TYPE DOUBLE PRECISION (SBOLS-S, DBOLS-D)
 ***KEYWORDS BOUNDS, CONSTRAINTS, INEQUALITY, LEAST SQUARES, LINEAR
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 **** All INPUT and OUTPUT real variables are DOUBLE PRECISION ****

 The user must have dimension statements of the form:

 DIMENSION W(MDW,NCOLS+1), BL(NCOLS), BU(NCOLS),
 * X(NCOLS+NX), RW(5*NCOLS)
 INTEGER IND(NCOLS), IOPT(1+NI), IW(2*NCOLS)

 (Here NX=number of extra locations required for option 4; NX=0
 for no options; NX=NCOLS if this option is in use. Here NI=number
 of extra locations required for options 1-6; NI=0 for no
 options.)

 INPUT

 W(MDW,*),MROWS,NCOLS

 The array W(*,*) contains the matrix [E:F] on entry. The matrix
 [E:F] has MROWS rows and NCOLS+1 columns. This data is placed in
 the array W(*,*) with E occupying the first NCOLS columns and the
 right side vector F in column NCOLS+1. The row dimension, MDW, of
 the array W(*,*) must satisfy the inequality MDW .ge. MROWS.
 Other values of MDW are errors. The values of MROWS and NCOLS
 must be positive. Other values are errors. There is an exception
 to this when using option 1 for accumulation of blocks of
 equations. In that case MROWS is an OUTPUT variable ONLY, and the
 matrix data for [E:F] is placed in W(*,*), one block of rows at a
 time. MROWS contains the number of rows in the matrix after
 triangularizing several blocks of equations. This is an OUTPUT
 parameter ONLY when option 1 is used. See IOPT(*) CONTENTS
 for details about option 1.

 BL(*),BU(*),IND(*)

 These arrays contain the information about the bounds that the
 solution values are to satisfy. The value of IND(J) tells the
 type of bound and BL(J) and BU(J) give the explicit values for
 the respective upper and lower bounds.

 1. For IND(J)=1, require X(J) .ge. BL(J).

SLATEC3 (DACOSH through DS2Y) - 75

 (the value of BU(J) is not used.)
 2. For IND(J)=2, require X(J) .le. BU(J).
 (the value of BL(J) is not used.)
 3. For IND(J)=3, require X(J) .ge. BL(J) and
 X(J) .le. BU(J).
 4. For IND(J)=4, no bounds on X(J) are required.
 (the values of BL(J) and BU(J) are not used.)

 Values other than 1,2,3 or 4 for IND(J) are errors. In the case
 IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J)
 is an error.

 IOPT(*)

 This is the array where the user can specify nonstandard options
 for DBOLSM(). Most of the time this feature can be ignored by
 setting the input value IOPT(1)=99. Occasionally users may have
 needs that require use of the following subprogram options. For
 details about how to use the options see below: IOPT(*) CONTENTS.

 Option Number Brief Statement of Purpose
 ------ ------ ----- --------- -- -------
 1 Return to user for accumulation of blocks
 of least squares equations.
 2 Check lengths of all arrays used in the
 subprogram.
 3 Standard scaling of the data matrix, E.
 4 User provides column scaling for matrix E.
 5 Provide option array to the low-level
 subprogram DBOLSM().
 6 Move the IOPT(*) processing pointer.
 99 No more options to change.

 X(*)

 This array is used to pass data associated with option 4. Ignore
 this parameter if this option is not used. Otherwise see below:
 IOPT(*) CONTENTS.

 OUTPUT

 X(*),RNORM

 The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for
 the constrained least squares problem. The value RNORM is the
 minimum residual vector length.

 MODE

 The sign of MODE determines whether the subprogram has completed
 normally, or encountered an error condition or abnormal status. A
 value of MODE .ge. 0 signifies that the subprogram has completed
 normally. The value of MODE (.GE. 0) is the number of variables
 in an active status: not at a bound nor at the value ZERO, for
 the case of free variables. A negative value of MODE will be one

SLATEC3 (DACOSH through DS2Y) - 76

 of the cases -37,-36,...,-22, or -17,...,-2. Values .lt. -1
 correspond to an abnormal completion of the subprogram. To
 understand the abnormal completion codes see below: ERROR
 MESSAGES for DBOLS(). AN approximate solution will be returned
 to the user only when max. iterations is reached, MODE=-22.
 Values for MODE=-37,...,-22 come from the low-level subprogram
 DBOLSM(). See the section ERROR MESSAGES for DBOLSM() in the
 documentation for DBOLSM().

 RW(*),IW(*)

 These are working arrays with 5*NCOLS and 2*NCOLS entries.
 (normally the user can ignore the contents of these arrays,
 but they must be dimensioned properly.)

 IOPT(*) CONTENTS
 ------- --------
 The option array allows a user to modify internal variables in
 the subprogram without recompiling the source code. A central
 goal of the initial software design was to do a good job for most
 people. Thus the use of options will be restricted to a select
 group of users. The processing of the option array proceeds as
 follows: a pointer, here called LP, is initially set to the value
 1. This value is updated as each option is processed. At the
 pointer position the option number is extracted and used for
 locating other information that allows for options to be changed.
 The portion of the array IOPT(*) that is used for each option is
 fixed; the user and the subprogram both know how many locations
 are needed for each option. A great deal of error checking is
 done by the subprogram on the contents of the option array.
 Nevertheless it is still possible to give the subprogram optional
 input that is meaningless. For example option 4 uses the
 locations X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing
 scaling data. The user must manage the allocation of these
 locations.

 1
 -
 This option allows the user to solve problems with a large number
 of rows compared to the number of variables. The idea is that the
 subprogram returns to the user (perhaps many times) and receives
 new least squares equations from the calling program unit.
 Eventually the user signals "that's all" and then computes the
 solution with one final call to subprogram DBOLS(). The value of
 MROWS is an OUTPUT variable when this option is used. Its value
 is always in the range 0 .le. MROWS .le. NCOLS+1. It is equal to
 the number of rows after the triangularization of the entire set
 of equations. If LP is the processing pointer for IOPT(*), the
 usage for the sequential processing of blocks of equations is

 IOPT(LP)=1
 Move block of equations to W(*,*) starting at
 the first row of W(*,*).
 IOPT(LP+3)=# of rows in the block; user defined

 The user now calls DBOLS() in a loop. The value of IOPT(LP+1)
 directs the user's action. The value of IOPT(LP+2) points to
 where the subsequent rows are to be placed in W(*,*).

SLATEC3 (DACOSH through DS2Y) - 77

 .<LOOP
 . CALL DBOLS()
 . IF(IOPT(LP+1) .EQ. 1) THEN
 . IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED
 . PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN
 . W(*,*) STARTING AT ROW IOPT(LP+2).
 .
 . IF(THIS IS THE LAST BLOCK OF EQUATIONS) THEN
 . IOPT(LP+1)=2
 .<------CYCLE LOOP
 . ELSE IF (IOPT(LP+1) .EQ. 2) THEN
 <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0
 . ELSE
 . ERROR CONDITION; SHOULD NOT HAPPEN.
 .<END LOOP

 Use of this option adds 4 to the required length of IOPT(*).

 2
 -
 This option is useful for checking the lengths of all arrays used
 by DBOLS() against their actual requirements for this problem.
 The idea is simple: the user's program unit passes the declared
 dimension information of the arrays. These values are compared
 against the problem-dependent needs within the subprogram. If any
 of the dimensions are too small an error message is printed and a
 negative value of MODE is returned, -11 to -17. The printed error
 message tells how long the dimension should be. If LP is the
 processing pointer for IOPT(*),

 IOPT(LP)=2
 IOPT(LP+1)=Row dimension of W(*,*)
 IOPT(LP+2)=Col. dimension of W(*,*)
 IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*)
 IOPT(LP+4)=Dimension of X(*)
 IOPT(LP+5)=Dimension of RW(*)
 IOPT(LP+6)=Dimension of IW(*)
 IOPT(LP+7)=Dimension of IOPT(*)
 .
 CALL DBOLS()

 Use of this option adds 8 to the required length of IOPT(*).

 3
 -
 This option changes the type of scaling for the data matrix E.
 Nominally each nonzero column of E is scaled so that the
 magnitude of its largest entry is equal to the value ONE. If LP
 is the processing pointer for IOPT(*),

 IOPT(LP)=3
 IOPT(LP+1)=1,2 or 3
 1= Nominal scaling as noted;
 2= Each nonzero column scaled to have length ONE;
 3= Identity scaling; scaling effectively suppressed.
 .
 CALL DBOLS()

 Use of this option adds 2 to the required length of IOPT(*).

SLATEC3 (DACOSH through DS2Y) - 78

 4
 -
 This option allows the user to provide arbitrary (positive)
 column scaling for the matrix E. If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=4
 IOPT(LP+1)=IOFF
 X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1)
 = Positive scale factors for cols. of E.
 .
 CALL DBOLS()

 Use of this option adds 2 to the required length of IOPT(*) and
 NCOLS to the required length of X(*).

 5
 -
 This option allows the user to provide an option array to the
 low-level subprogram DBOLSM(). If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=5
 IOPT(LP+1)= Position in IOPT(*) where option array
 data for DBOLSM() begins.
 .
 CALL DBOLS()

 Use of this option adds 2 to the required length of IOPT(*).

 6
 -
 Move the processing pointer (either forward or backward) to the
 location IOPT(LP+1). The processing point is moved to entry
 LP+2 of IOPT(*) if the option is left with -6 in IOPT(LP). For
 example to skip over locations 3,...,NCOLS+2 of IOPT(*),

 IOPT(1)=6
 IOPT(2)=NCOLS+3
 (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
 IOPT(NCOLS+3)=99
 CALL DBOLS()

 CAUTION: Misuse of this option can yield some very hard
 -to-find bugs. Use it with care.

 99
 --
 There are no more options to change.

 Only option numbers -99, -6,-5,...,-1, 1,2,...,6, and 99 are
 permitted. Other values are errors. Options -99,-1,...,-6 mean
 that the respective options 99,1,...,6 are left at their default
 values. An example is the option to modify the (rank) tolerance:

 IOPT(1)=-3 Option is recognized but not changed
 IOPT(2)=2 Scale nonzero cols. to have length ONE
 IOPT(3)=99

SLATEC3 (DACOSH through DS2Y) - 79

 ERROR MESSAGES for DBOLS()
 ----- -------- --- -------

 WARNING IN...
 DBOLS(). MDW=(I1) MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 2
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 3
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 0
 ERROR NUMBER = 4
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= 0.
 IN ABOVE MESSAGE, R2= ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 6
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS(). ISCALE OPTION=(I1) MUST BE 1-3.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 7
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED COLUMN SCALING
 MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 8
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE.
 COMPONENT (I1) NOW = (R1).
 IN ABOVE MESSAGE, I1= ND. .LE. MDW=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 0
 ERROR NUMBER = 10
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS().THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE.THE NUMBER OF ROWS=
 (I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 1
 ERROR NUMBER = 11
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

SLATEC3 (DACOSH through DS2Y) - 80

 WARNING IN...
 DBOLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+1=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 12
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS().THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1) MUST BE
 .GE. NCOLS=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 1
 ERROR NUMBER = 13
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS(). THE DIMENSION OF X()=(I1) MUST BE .GE. THE REQD. LENGTH=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 14
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS(). THE DIMENSION OF RW()=(I1) MUST BE .GE. 5*NCOLS=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 3
 ERROR NUMBER = 15
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 16
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 DBOLS() THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD. LEN.=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 1
 ERROR NUMBER = 17
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 ***REFERENCES R. J. Hanson, Linear least squares with bounds and
 linear constraints, Report SAND82-1517, Sandia
 Laboratories, August 1982.
 ***ROUTINES CALLED DBOLSM, DCOPY, DNRM2, DROT, DROTG, IDAMAX, XERMSG
 ***REVISION HISTORY (YYMMDD)
 821220 DATE WRITTEN
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 81

DBSI0E

 DOUBLE PRECISION FUNCTION DBSI0E (X)
 ***BEGIN PROLOGUE DBSI0E
 ***PURPOSE Compute the exponentially scaled modified (hyperbolic)
 Bessel function of the first kind of order zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE DOUBLE PRECISION (BESI0E-S, DBSI0E-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FIRST KIND, FNLIB,
 HYPERBOLIC BESSEL FUNCTION, MODIFIED BESSEL FUNCTION,
 ORDER ZERO, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBSI0E(X) calculates the double precision exponentially scaled
 modified (hyperbolic) Bessel function of the first kind of order
 zero for double precision argument X. The result is the Bessel
 function I0(X) multiplied by EXP(-ABS(X)).

 Series for BI0 on the interval 0. to 9.00000E+00
 with weighted error 9.51E-34
 log weighted error 33.02
 significant figures required 33.31
 decimal places required 33.65

 Series for AI0 on the interval 1.25000E-01 to 3.33333E-01
 with weighted error 2.74E-32
 log weighted error 31.56
 significant figures required 30.15
 decimal places required 32.39

 Series for AI02 on the interval 0. to 1.25000E-01
 with weighted error 1.97E-32
 log weighted error 31.71
 significant figures required 30.15
 decimal places required 32.63

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 82

DBSI1E

 DOUBLE PRECISION FUNCTION DBSI1E (X)
 ***BEGIN PROLOGUE DBSI1E
 ***PURPOSE Compute the exponentially scaled modified (hyperbolic)
 Bessel function of the first kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE DOUBLE PRECISION (BESI1E-S, DBSI1E-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FIRST KIND, FNLIB,
 HYPERBOLIC BESSEL FUNCTION, MODIFIED BESSEL FUNCTION,
 ORDER ONE, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBSI1E(X) calculates the double precision exponentially scaled
 modified (hyperbolic) Bessel function of the first kind of order
 one for double precision argument X. The result is I1(X)
 multiplied by EXP(-ABS(X)).

 Series for BI1 on the interval 0. to 9.00000E+00
 with weighted error 1.44E-32
 log weighted error 31.84
 significant figures required 31.45
 decimal places required 32.46

 Series for AI1 on the interval 1.25000E-01 to 3.33333E-01
 with weighted error 2.81E-32
 log weighted error 31.55
 significant figures required 29.93
 decimal places required 32.38

 Series for AI12 on the interval 0. to 1.25000E-01
 with weighted error 1.83E-32
 log weighted error 31.74
 significant figures required 29.97
 decimal places required 32.66

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 83

DBSK0E

 DOUBLE PRECISION FUNCTION DBSK0E (X)
 ***BEGIN PROLOGUE DBSK0E
 ***PURPOSE Compute the exponentially scaled modified (hyperbolic)
 Bessel function of the third kind of order zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE DOUBLE PRECISION (BESK0E-S, DBSK0E-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBSK0E(X) computes the double precision exponentially scaled
 modified (hyperbolic) Bessel function of the third kind of
 order zero for positive double precision argument X.

 Series for BK0 on the interval 0. to 4.00000E+00
 with weighted error 3.08E-33
 log weighted error 32.51
 significant figures required 32.05
 decimal places required 33.11

 Series for AK0 on the interval 1.25000E-01 to 5.00000E-01
 with weighted error 2.85E-32
 log weighted error 31.54
 significant figures required 30.19
 decimal places required 32.33

 Series for AK02 on the interval 0. to 1.25000E-01
 with weighted error 2.30E-32
 log weighted error 31.64
 significant figures required 29.68
 decimal places required 32.40

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DBESI0, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 84

DBSK1E

 DOUBLE PRECISION FUNCTION DBSK1E (X)
 ***BEGIN PROLOGUE DBSK1E
 ***PURPOSE Compute the exponentially scaled modified (hyperbolic)
 Bessel function of the third kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE DOUBLE PRECISION (BESK1E-S, DBSK1E-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBSK1E(S) computes the double precision exponentially scaled
 modified (hyperbolic) Bessel function of the third kind of order
 one for positive double precision argument X.

 Series for BK1 on the interval 0. to 4.00000E+00
 with weighted error 9.16E-32
 log weighted error 31.04
 significant figures required 30.61
 decimal places required 31.64

 Series for AK1 on the interval 1.25000E-01 to 5.00000E-01
 with weighted error 3.07E-32
 log weighted error 31.51
 significant figures required 30.71
 decimal places required 32.30

 Series for AK12 on the interval 0. to 1.25000E-01
 with weighted error 2.41E-32
 log weighted error 31.62
 significant figures required 30.25
 decimal places required 32.38

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DBESI1, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 85

DBSKES

 SUBROUTINE DBSKES (XNU, X, NIN, BKE)
 ***BEGIN PROLOGUE DBSKES
 ***PURPOSE Compute a sequence of exponentially scaled modified Bessel
 functions of the third kind of fractional order.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B3
 ***TYPE DOUBLE PRECISION (BESKES-S, DBSKES-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FNLIB, FRACTIONAL ORDER,
 MODIFIED BESSEL FUNCTION, SEQUENCE OF BESSEL FUNCTIONS,
 SPECIAL FUNCTIONS, THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DBSKES(XNU,X,NIN,BKE) computes a double precision sequence
 of exponentially scaled modified Bessel functions
 of the third kind of order XNU + I at X, where X .GT. 0,
 XNU lies in (-1,1), and I = 0, 1, ... , NIN - 1, if NIN is positive
 and I = 0, -1, ... , NIN + 1, if NIN is negative. On return, the
 vector BKE(.) contains the results at X for order starting at XNU.
 XNU, X, and BKE are double precision. NIN is integer.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9KNUS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 86

DBSKIN

 SUBROUTINE DBSKIN (X, N, KODE, M, Y, NZ, IERR)
 ***BEGIN PROLOGUE DBSKIN
 ***PURPOSE Compute repeated integrals of the K-zero Bessel function.
 ***LIBRARY SLATEC
 ***CATEGORY C10F
 ***TYPE DOUBLE PRECISION (BSKIN-S, DBSKIN-D)
 ***KEYWORDS BICKLEY FUNCTIONS, EXPONENTIAL INTEGRAL,
 INTEGRALS OF BESSEL FUNCTIONS, K-ZERO BESSEL FUNCTION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 The following definitions are used in DBSKIN:

 Definition 1
 KI(0,X) = K-zero Bessel function.

 Definition 2
 KI(N,X) = Bickley Function
 = integral from X to infinity of KI(N-1,t)dt
 for X .ge. 0 and N = 1,2,...

 DBSKIN computes a sequence of Bickley functions (repeated integrals
 of the K0 Bessel function); i.e. for fixed X and N and for K=1,...,
 DBSKIN computes the sequence

 Y(K) = KI(N+K-1,X) for KODE=1
 or
 Y(K) = EXP(X)*KI(N+K-1,X) for KODE=2,

 for N.ge.0 and X.ge.0 (N and X cannot be zero simultaneously).

 INPUT X is DOUBLE PRECISION
 X - Argument, X .ge. 0.0D0
 N - Order of first member of the sequence N .ge. 0
 KODE - Selection parameter
 KODE = 1 returns Y(K)= KI(N+K-1,X), K=1,M
 = 2 returns Y(K)=EXP(X)*KI(N+K-1,X), K=1,M
 M - Number of members in the sequence, M.ge.1

 OUTPUT Y is a DOUBLE PRECISION VECTOR
 Y - A vector of dimension at least M containing the
 sequence selected by KODE.
 NZ - Underflow flag
 NZ = 0 means computation completed
 = 1 means an exponential underflow occurred on
 KODE=1. Y(K)=0.0D0, K=1,...,M is returned
 KODE=1 AND Y(K)=0.0E0, K=1,...,M IS RETURNED
 IERR - Error flag
 IERR=0, Normal return, computation completed
 IERR=1, Input error, no computation
 IERR=2, Error, no computation
 Algorithm termination condition not met

 The nominal computational accuracy is the maximum of unit
 roundoff (=D1MACH(4)) and 1.0D-18 since critical constants
 are given to only 18 digits.

SLATEC3 (DACOSH through DS2Y) - 87

 BSKIN is the single precision version of DBSKIN.

 *Long Description:

 Numerical recurrence on

 (L-1)*KI(L,X) = X(KI(L-3,X) - KI(L-1,X)) + (L-2)*KI(L-2,X)

 is stable where recurrence is carried forward or backward
 away from INT(X+0.5). The power series for indices 0,1 and 2
 on 0.le.X.le.2 starts a stable recurrence for indices
 greater than 2. If N is sufficiently large (N.gt.NLIM), the
 uniform asymptotic expansion for N to INFINITY is more
 economical. On X.gt.2 the recursion is started by evaluating
 the uniform expansion for the three members whose indices are
 closest to INT(X+0.5) within the set N,...,N+M-1. Forward
 recurrence, backward recurrence or both complete the
 sequence depending on the relation of INT(X+0.5) to the
 indices N,...,N+M-1.

 ***REFERENCES D. E. Amos, Uniform asymptotic expansions for
 exponential integrals E(N,X) and Bickley functions
 KI(N,X), ACM Transactions on Mathematical Software,
 1983.
 D. E. Amos, A portable Fortran subroutine for the
 Bickley functions KI(N,X), Algorithm 609, ACM
 Transactions on Mathematical Software, 1983.
 ***ROUTINES CALLED D1MACH, DBKIAS, DBKISR, DEXINT, DGAMRN, I1MACH
 ***REVISION HISTORY (YYMMDD)
 820601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891009 Removed unreferenced statement label. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 88

DBSPDR

 SUBROUTINE DBSPDR (T, A, N, K, NDERIV, AD)
 ***BEGIN PROLOGUE DBSPDR
 ***PURPOSE Use the B-representation to construct a divided difference
 table preparatory to a (right) derivative calculation.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE DOUBLE PRECISION (BSPDR-S, DBSPDR-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, DIFFERENTIATION OF SPLINES,
 INTERPOLATION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****
 DBSPDR is the BSPLDR routine of the reference.

 DBSPDR uses the B-representation (T,A,N,K) to construct a
 divided difference table ADIF preparatory to a (right)
 derivative calculation in DBSPEV. The lower triangular matrix
 ADIF is stored in vector AD by columns. The arrays are
 related by

 ADIF(I,J) = AD(I-J+1 + (2*N-J+2)*(J-1)/2)

 I = J,N , J=1,NDERIV.

 Description of Arguments

 Input T,A are double precision
 T - knot vector of length N+K
 A - B-spline coefficient vector of length N
 N - number of B-spline coefficients
 N = sum of knot multiplicities-K
 K - order of the spline, K .GE. 1
 NDERIV - number of derivatives, 1 .LE. NDERIV .LE. K.
 NDERIV=1 gives the zero-th derivative =
 function value

 Output AD is double precision
 AD - table of differences in a vector of length
 (2*N-NDERIV+1)*NDERIV/2 for input to DBSPEV

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC3 (DACOSH through DS2Y) - 89

 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 90

DBSPEV

 SUBROUTINE DBSPEV (T, AD, N, K, NDERIV, X, INEV, SVALUE, WORK)
 ***BEGIN PROLOGUE DBSPEV
 ***PURPOSE Calculate the value of the spline and its derivatives from
 the B-representation.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE DOUBLE PRECISION (BSPEV-S, DBSPEV-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****
 DBSPEV is the BSPLEV routine of the reference.

 DBSPEV calculates the value of the spline and its derivatives
 at X from the B-representation (T,A,N,K) and returns them in
 SVALUE(I),I=1,NDERIV, T(K) .LE. X .LE. T(N+1). AD(I) can be
 the B-spline coefficients A(I), I=1,N) if NDERIV=1. Otherwise
 AD must be computed before hand by a call to DBSPDR (T,A,N,K,
 NDERIV,AD). If X=T(I),I=K,N), right limiting values are
 obtained.

 To compute left derivatives or left limiting values at a
 knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.

 DBSPEV calls DINTRV, DBSPVN

 Description of Arguments

 Input T,AD,X, are double precision
 T - knot vector of length N+K
 AD - vector of length (2*N-NDERIV+1)*NDERIV/2 containing
 the difference table from DBSPDR.
 N - number of B-spline coefficients
 N = sum of knot multiplicities-K
 K - order of the B-spline, K .GE. 1
 NDERIV - number of derivatives, 1 .LE. NDERIV .LE. K.
 NDERIV=1 gives the zero-th derivative =
 function value
 X - argument, T(K) .LE. X .LE. T(N+1)
 INEV - an initialization parameter which must be set
 to 1 the first time DBSPEV is called.

 Output SVALUE,WORK are double precision
 INEV - INEV contains information for efficient process-
 ing after the initial call and INEV must not
 be changed by the user. Distinct splines require
 distinct INEV parameters.
 SVALUE - vector of length NDERIV containing the spline
 value in SVALUE(1) and the NDERIV-1 derivatives
 in the remaining components.
 WORK - work vector of length 3*K

 Error Conditions

SLATEC3 (DACOSH through DS2Y) - 91

 Improper input is a fatal error.

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED DBSPVN, DINTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 92

DBSPPP

 SUBROUTINE DBSPPP (T, A, N, K, LDC, C, XI, LXI, WORK)
 ***BEGIN PROLOGUE DBSPPP
 ***PURPOSE Convert the B-representation of a B-spline to the piecewise
 polynomial (PP) form.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE DOUBLE PRECISION (BSPPP-S, DBSPPP-D)
 ***KEYWORDS B-SPLINE, PIECEWISE POLYNOMIAL
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****
 DBSPPP is the BSPLPP routine of the reference.

 DBSPPP converts the B-representation (T,A,N,K) to the
 piecewise polynomial (PP) form (C,XI,LXI,K) for use with
 DPPVAL. Here XI(*), the break point array of length LXI, is
 the knot array T(*) with multiplicities removed. The columns
 of the matrix C(I,J) contain the right Taylor derivatives
 for the polynomial expansion about XI(J) for the intervals
 XI(J) .LE. X .LE. XI(J+1), I=1,K, J=1,LXI. Function DPPVAL
 makes this evaluation at a specified point X in
 XI(1) .LE. X .LE. XI(LXI+1)

 Description of Arguments

 Input T,A are double precision
 T - knot vector of length N+K
 A - B-spline coefficient vector of length N
 N - number of B-spline coefficients
 N = sum of knot multiplicities-K
 K - order of the B-spline, K .GE. 1
 LDC - leading dimension of C, LDC .GE. K

 Output C,XI,WORK are double precision
 C - matrix of dimension at least (K,LXI) containing
 right derivatives at break points
 XI - XI break point vector of length LXI+1
 LXI - number of break points, LXI .LE. N-K+1
 WORK - work vector of length K*(N+3)

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED DBSPDR, DBSPEV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)

SLATEC3 (DACOSH through DS2Y) - 93

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 94

DBSPVD

 SUBROUTINE DBSPVD (T, K, NDERIV, X, ILEFT, LDVNIK, VNIKX, WORK)
 ***BEGIN PROLOGUE DBSPVD
 ***PURPOSE Calculate the value and all derivatives of order less than
 NDERIV of all basis functions which do not vanish at X.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE DOUBLE PRECISION (BSPVD-S, DBSPVD-D)
 ***KEYWORDS DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****

 DBSPVD is the BSPLVD routine of the reference.

 DBSPVD calculates the value and all derivatives of order
 less than NDERIV of all basis functions which do not
 (possibly) vanish at X. ILEFT is input such that
 T(ILEFT) .LE. X .LT. T(ILEFT+1). A call to INTRV(T,N+1,X,
 ILO,ILEFT,MFLAG) will produce the proper ILEFT. The output of
 DBSPVD is a matrix VNIKX(I,J) of dimension at least (K,NDERIV)
 whose columns contain the K nonzero basis functions and
 their NDERIV-1 right derivatives at X, I=1,K, J=1,NDERIV.
 These basis functions have indices ILEFT-K+I, I=1,K,
 K .LE. ILEFT .LE. N. The nonzero part of the I-th basis
 function lies in (T(I),T(I+K)), I=1,N).

 If X=T(ILEFT+1) then VNIKX contains left limiting values
 (left derivatives) at T(ILEFT+1). In particular, ILEFT = N
 produces left limiting values at the right end point
 X=T(N+1). To obtain left limiting values at T(I), I=K+1,N+1,
 set X= next lower distinct knot, call INTRV to get ILEFT,
 set X=T(I), and then call DBSPVD.

 Description of Arguments
 Input T,X are double precision
 T - knot vector of length N+K, where
 N = number of B-spline basis functions
 N = sum of knot multiplicities-K
 K - order of the B-spline, K .GE. 1
 NDERIV - number of derivatives = NDERIV-1,
 1 .LE. NDERIV .LE. K
 X - argument of basis functions,
 T(K) .LE. X .LE. T(N+1)
 ILEFT - largest integer such that
 T(ILEFT) .LE. X .LT. T(ILEFT+1)
 LDVNIK - leading dimension of matrix VNIKX

 Output VNIKX,WORK are double precision
 VNIKX - matrix of dimension at least (K,NDERIV) contain-
 ing the nonzero basis functions at X and their
 derivatives columnwise.
 WORK - a work vector of length (K+1)*(K+2)/2

SLATEC3 (DACOSH through DS2Y) - 95

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED DBSPVN, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 96

DBSPVN

 SUBROUTINE DBSPVN (T, JHIGH, K, INDEX, X, ILEFT, VNIKX, WORK,
 + IWORK)
 ***BEGIN PROLOGUE DBSPVN
 ***PURPOSE Calculate the value of all (possibly) nonzero basis
 functions at X.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE DOUBLE PRECISION (BSPVN-S, DBSPVN-D)
 ***KEYWORDS EVALUATION OF B-SPLINE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****
 DBSPVN is the BSPLVN routine of the reference.

 DBSPVN calculates the value of all (possibly) nonzero basis
 functions at X of order MAX(JHIGH,(J+1)*(INDEX-1)), where T(K)
 .LE. X .LE. T(N+1) and J=IWORK is set inside the routine on
 the first call when INDEX=1. ILEFT is such that T(ILEFT) .LE.
 X .LT. T(ILEFT+1). A call to DINTRV(T,N+1,X,ILO,ILEFT,MFLAG)
 produces the proper ILEFT. DBSPVN calculates using the basic
 algorithm needed in DBSPVD. If only basis functions are
 desired, setting JHIGH=K and INDEX=1 can be faster than
 calling DBSPVD, but extra coding is required for derivatives
 (INDEX=2) and DBSPVD is set up for this purpose.

 Left limiting values are set up as described in DBSPVD.

 Description of Arguments

 Input T,X are double precision
 T - knot vector of length N+K, where
 N = number of B-spline basis functions
 N = sum of knot multiplicities-K
 JHIGH - order of B-spline, 1 .LE. JHIGH .LE. K
 K - highest possible order
 INDEX - INDEX = 1 gives basis functions of order JHIGH
 = 2 denotes previous entry with work, IWORK
 values saved for subsequent calls to
 DBSPVN.
 X - argument of basis functions,
 T(K) .LE. X .LE. T(N+1)
 ILEFT - largest integer such that
 T(ILEFT) .LE. X .LT. T(ILEFT+1)

 Output VNIKX, WORK are double precision
 VNIKX - vector of length K for spline values.
 WORK - a work vector of length 2*K
 IWORK - a work parameter. Both WORK and IWORK contain
 information necessary to continue for INDEX = 2.
 When INDEX = 1 exclusively, these are scratch
 variables and can be used for other purposes.

 Error Conditions

SLATEC3 (DACOSH through DS2Y) - 97

 Improper input is a fatal error.

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 98

DBSQAD

 SUBROUTINE DBSQAD (T, BCOEF, N, K, X1, X2, BQUAD, WORK)
 ***BEGIN PROLOGUE DBSQAD
 ***PURPOSE Compute the integral of a K-th order B-spline using the
 B-representation.
 ***LIBRARY SLATEC
 ***CATEGORY H2A2A1, E3, K6
 ***TYPE DOUBLE PRECISION (BSQAD-S, DBSQAD-D)
 ***KEYWORDS INTEGRAL OF B-SPLINES, QUADRATURE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****

 DBSQAD computes the integral on (X1,X2) of a K-th order
 B-spline using the B-representation (T,BCOEF,N,K). Orders
 K as high as 20 are permitted by applying a 2, 6, or 10
 point Gauss formula on subintervals of (X1,X2) which are
 formed by included (distinct) knots.

 If orders K greater than 20 are needed, use DBFQAD with
 F(X) = 1.

 The maximum number of significant digits obtainable in
 DBSQAD is the smaller of 18 and the number of digits
 carried in double precision arithmetic.

 Description of Arguments
 Input T,BCOEF,X1,X2 are double precision
 T - knot array of length N+K
 BCOEF - B-spline coefficient array of length N
 N - length of coefficient array
 K - order of B-spline, 1 .LE. K .LE. 20
 X1,X2 - end points of quadrature interval in
 T(K) .LE. X .LE. T(N+1)

 Output BQUAD,WORK are double precision
 BQUAD - integral of the B-spline over (X1,X2)
 WORK - work vector of length 3*K

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES D. E. Amos, Quadrature subroutines for splines and
 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.
 ***ROUTINES CALLED DBVALU, DINTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 99

DBVALU

 DOUBLE PRECISION FUNCTION DBVALU (T, A, N, K, IDERIV, X, INBV,
 + WORK)
 ***BEGIN PROLOGUE DBVALU
 ***PURPOSE Evaluate the B-representation of a B-spline at X for the
 function value or any of its derivatives.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE DOUBLE PRECISION (BVALU-S, DBVALU-D)
 ***KEYWORDS DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****
 DBVALU is the BVALUE function of the reference.

 DBVALU evaluates the B-representation (T,A,N,K) of a B-spline
 at X for the function value on IDERIV=0 or any of its
 derivatives on IDERIV=1,2,...,K-1. Right limiting values
 (right derivatives) are returned except at the right end
 point X=T(N+1) where left limiting values are computed. The
 spline is defined on T(K) .LE. X .LE. T(N+1). DBVALU returns
 a fatal error message when X is outside of this interval.

 To compute left derivatives or left limiting values at a
 knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.

 DBVALU calls DINTRV

 Description of Arguments

 Input T,A,X are double precision
 T - knot vector of length N+K
 A - B-spline coefficient vector of length N
 N - number of B-spline coefficients
 N = sum of knot multiplicities-K
 K - order of the B-spline, K .GE. 1
 IDERIV - order of the derivative, 0 .LE. IDERIV .LE. K-1
 IDERIV = 0 returns the B-spline value
 X - argument, T(K) .LE. X .LE. T(N+1)
 INBV - an initialization parameter which must be set
 to 1 the first time DBVALU is called.

 Output WORK,DBVALU are double precision
 INBV - INBV contains information for efficient process-
 ing after the initial call and INBV must not
 be changed by the user. Distinct splines require
 distinct INBV parameters.
 WORK - work vector of length 3*K.
 DBVALU - value of the IDERIV-th derivative at X

 Error Conditions
 An improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,

SLATEC3 (DACOSH through DS2Y) - 100

 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED DINTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 101

DBVSUP

 SUBROUTINE DBVSUP (Y, NROWY, NCOMP, XPTS, NXPTS, A, NROWA, ALPHA,
 NIC, B, NROWB, BETA, NFC, IGOFX, RE, AE, IFLAG, WORK, NDW,
 + IWORK, NDIW, NEQIVP)
 ***BEGIN PROLOGUE DBVSUP
 ***PURPOSE Solve a linear two-point boundary value problem using
 superposition coupled with an orthonormalization procedure
 and a variable-step integration scheme.
 ***LIBRARY SLATEC
 ***CATEGORY I1B1
 ***TYPE DOUBLE PRECISION (BVSUP-S, DBVSUP-D)
 ***KEYWORDS ORTHONORMALIZATION, SHOOTING,
 TWO-POINT BOUNDARY VALUE PROBLEM
 ***AUTHOR Scott, M. R., (SNLA)
 Watts, H. A., (SNLA)
 ***DESCRIPTION

 **

 Subroutine DBVSUP solves a linear two-point boundary-value problem
 of the form
 DY/DX = MATRIX(X,U)*Y(X) + G(X,U)
 A*Y(XINITIAL) = ALPHA , B*Y(XFINAL) = BETA

 coupled with the solution of the initial value problem

 DU/DX = F(X,U)
 U(XINITIAL) = ETA

 **
 ABSTRACT
 The method of solution uses superposition coupled with an
 orthonormalization procedure and a variable-step integration
 scheme. Each time the superposition solutions start to
 lose their numerical linear independence, the vectors are
 reorthonormalized before integration proceeds. The underlying
 principle of the algorithm is then to piece together the
 intermediate (orthogonalized) solutions, defined on the various
 subintervals, to obtain the desired solutions.

 **
 INPUT to DBVSUP
 **

 NROWY = actual row dimension of Y in calling program.
 NROWY must be .GE. NCOMP

 NCOMP = number of components per solution vector.
 NCOMP is equal to number of original differential
 equations. NCOMP = NIC + NFC.

 XPTS = desired output points for solution. They must be monotonic.
 XINITIAL = XPTS(1)
 XFINAL = XPTS(NXPTS)

 NXPTS = number of output points.

SLATEC3 (DACOSH through DS2Y) - 102

 A(NROWA,NCOMP) = boundary condition matrix at XINITIAL
 must be contained in (NIC,NCOMP) sub-matrix.

 NROWA = actual row dimension of A in calling program,
 NROWA must be .GE. NIC.

 ALPHA(NIC+NEQIVP) = boundary conditions at XINITIAL.
 If NEQIVP .GT. 0 (see below), the boundary
 conditions at XINITIAL for the initial value
 equations must be stored starting in
 position (NIC + 1) of ALPHA.
 Thus, ALPHA(NIC+K) = ETA(K).

 NIC = number of boundary conditions at XINITIAL.

 B(NROWB,NCOMP) = boundary condition matrix at XFINAL.
 Must be contained in (NFC,NCOMP) sub-matrix.

 NROWB = actual row dimension of B in calling program,
 NROWB must be .GE. NFC.

 BETA(NFC) = boundary conditions at XFINAL.

 NFC = number of boundary conditions at XFINAL.

 IGOFX =0 -- The inhomogeneous term G(X) is identically zero.
 =1 -- The inhomogeneous term G(X) is not identically zero.
 (if IGOFX=1, then Subroutine DGVEC (or DUVEC) must be
 supplied).

 RE = relative error tolerance used by the integrator.
 (see one of the integrators)

 AE = absolute error tolerance used by the integrator.
 (see one of the integrators)
 **NOTE- RE and AE should not both be zero.

 IFLAG = a status parameter used principally for output.
 However, for efficient solution of problems which
 are originally defined as COMPLEX*16 valued (but
 converted to double precision systems to use this code),
 the user must set IFLAG=13 on input. See the comment
 below for more information on solving such problems.

 WORK(NDW) = floating point array used for internal storage.

 NDW = actual dimension of work array allocated by user.
 An estimate for NDW can be computed from the following
 NDW = 130 + NCOMP**2 * (6 + NXPTS/2 + expected number of
 orthonormalizations/8)
 For the disk or tape storage mode,
 NDW = 6 * NCOMP**2 + 10 * NCOMP + 130
 However, when the ADAMS integrator is to be used, the estimates are
 NDW = 130 + NCOMP**2 * (13 + NXPTS/2 + expected number of
 orthonormalizations/8)
 and NDW = 13 * NCOMP**2 + 22 * NCOMP + 130 , respectively.

 IWORK(NDIW) = integer array used for internal storage.

 NDIW = actual dimension of IWORK array allocated by user.

SLATEC3 (DACOSH through DS2Y) - 103

 An estimate for NDIW can be computed from the following
 NDIW = 68 + NCOMP * (1 + expected number of
 orthonormalizations)
 **NOTE -- the amount of storage required is problem dependent and may
 be difficult to predict in advance. Experience has shown
 that for most problems 20 or fewer orthonormalizations
 should suffice. If the problem cannot be completed with the
 allotted storage, then a message will be printed which
 estimates the amount of storage necessary. In any case, the
 user can examine the IWORK array for the actual storage
 requirements, as described in the output information below.

 NEQIVP = number of auxiliary initial value equations being added
 to the boundary value problem.
 **NOTE -- Occasionally the coefficients matrix and/or G may be
 functions which depend on the independent variable X and
 on U, the solution of an auxiliary initial value problem.
 In order to avoid the difficulties associated with
 interpolation, the auxiliary equations may be solved
 simultaneously with the given boundary value problem.
 This initial value problem may be linear or nonlinear.
 See SAND77-1328 for an example.

 The user must supply subroutines DFMAT, DGVEC, DUIVP and DUVEC,
 when needed (they must be so named), to evaluate the derivatives
 as follows

 A. DFMAT must be supplied.

 SUBROUTINE DFMAT(X,Y,YP)
 X = independent variable (input to DFMAT)
 Y = dependent variable vector (input to DFMAT)
 YP = DY/DX = derivative vector (output from DFMAT)

 Compute the derivatives for the homogeneous problem
 YP(I) = DY(I)/DX = MATRIX(X) * Y(I) , I = 1,...,NCOMP

 When (NEQIVP .GT. 0) and matrix is dependent on U as
 well as on X, the following common statement must be
 included in DFMAT
 COMMON /DMLIVP/ NOFST
 for convenience, the U vector is stored at the bottom
 of the Y array. Thus, during any call to DFMAT,
 U(I) is referenced by Y(NOFST + I).

 Subroutine DBVDER calls DFMAT NFC times to evaluate the
 homogeneous equations and, if necessary, it calls DFMAT
 once in evaluating the particular solution. since X remains
 unchanged in this sequence of calls it is possible to
 realize considerable computational savings for complicated
 and expensive evaluations of the matrix entries. To do this
 the user merely passes a variable, say XS, via common where
 XS is defined in the main program to be any value except
 the initial X. Then the non-constant elements of matrix(x)
 appearing in the differential equations need only be
 computed if X is unequal to XS, whereupon XS is reset to X.

SLATEC3 (DACOSH through DS2Y) - 104

 B. If NEQIVP .GT. 0 , DUIVP must also be supplied.

 SUBROUTINE DUIVP(X,U,UP)
 X = independent variable (input to DUIVP)
 U = dependent variable vector (input to DUIVP)
 UP = DU/DX = derivative vector (output from DUIVP)

 Compute the derivatives for the auxiliary initial value eqs
 UP(I) = DU(I)/DX, I = 1,...,NEQIVP.

 Subroutine DBVDER calls DUIVP once to evaluate the
 derivatives for the auxiliary initial value equations.

 C. If NEQIVP = 0 and IGOFX = 1 , DGVEC must be supplied.

 SUBROUTINE DGVEC(X,G)
 X = independent variable (input to DGVEC)
 G = vector of inhomogeneous terms G(X) (output from
 DGVEC)

 Compute the inhomogeneous terms G(X)
 G(I) = G(X) values for I = 1,...,NCOMP.

 Subroutine DBVDER calls DGVEC in evaluating the particular
 solution provided G(X) is not identically zero. Thus, when
 IGOFX=0, the user need not write a DGVEC subroutine. Also,
 the user does not have to bother with the computational
 savings scheme for DGVEC as this is automatically achieved
 via the DBVDER subroutine.

 D. If NEQIVP .GT. 0 and IGOFX = 1 , DUVEC must be supplied.

 SUBROUTINE DUVEC(X,U,G)
 X = independent variable (input to DUVEC)
 U = dependent variable vector from the auxiliary initial
 value problem (input to DUVEC)
 G = array of inhomogeneous terms G(X,U)(output from DUVEC)

 Compute the inhomogeneous terms G(X,U)
 G(I) = G(X,U) values for I = 1,...,NCOMP.

 Subroutine DBVDER calls DUVEC in evaluating the particular
 solution provided G(X,U) is not identically zero. Thus,
 when IGOFX=0, the user need not write a DUVEC subroutine.

 The following is optional input to DBVSUP to give user more
 flexibility in use of code. See SAND75-0198, SAND77-1328,
 SAND77-1690, SAND78-0522, and SAND78-1501 for more information.

 ****CAUTION -- The user must zero out IWORK(1),...,IWORK(15)
 prior to calling DBVSUP. These locations define
 optional input and must be zero unless set to special
 values by the user as described below.

 IWORK(1) -- number of orthonormalization points.
 A value need be set only if IWORK(11) = 1

SLATEC3 (DACOSH through DS2Y) - 105

 IWORK(9) -- integrator and orthonormalization parameter
 (default value is 1)
 1 = RUNGE-KUTTA-FEHLBERG code using GRAM-SCHMIDT test.
 2 = ADAMS code using GRAM-SCHMIDT test.

 IWORK(11) -- orthonormalization points parameter
 (default value is 0)
 0 - orthonormalization points not pre-assigned.
 1 - orthonormalization points pre-assigned in
 the first IWORK(1) positions of work.

 IWORK(12) -- storage parameter
 (default value is 0)
 0 - all storage in core.
 LUN - homogeneous and inhomogeneous solutions at
 output points and orthonormalization information
 are stored on disk. The logical unit number to
 be used for disk I/O (NTAPE) is set to IWORK(12).

 WORK(1),... -- pre-assigned orthonormalization points, stored
 monotonically, corresponding to the direction
 of integration.

 **
 *** COMPLEX*16 VALUED PROBLEM ***
 **
 NOTE*
 Suppose the original boundary value problem is NC equations
 of the form
 DW/DX = MAT(X,U)*W(X) + H(X,U)
 R*W(XINITIAL)=GAMMA , S*W(XFINAL)=DELTA
 where all variables are COMPLEX*16 valued. The DBVSUP code can be
 used by converting to a double precision system of size 2*NC. To
 solve the larger dimensioned problem efficiently, the user must
 initialize IFLAG=13 on input and order the vector components
 according to Y(1)=DOUBLE PRECISION(W(1)),...,Y(NC)=DOUBLE
 PRECISION(W(NC)),Y(NC+1)=IMAG(W(1)),...., Y(2*NC)=IMAG(W(NC)).
 Then define
 ...
 . DOUBLE PRECISION(MAT) -IMAG(MAT) .
 MATRIX = . .
 . IMAG(MAT) DOUBLE PRECISION(MAT) .
 ...

 The matrices A,B and vectors G,ALPHA,BETA must be defined
 similarly. Further details can be found in SAND78-1501.

 **
 OUTPUT from DBVSUP
 **

 Y(NROWY,NXPTS) = solution at specified output points.

 IFLAG Output Values
 =-5 algorithm ,for obtaining starting vectors for the
 special COMPLEX*16 problem structure, was unable to

SLATEC3 (DACOSH through DS2Y) - 106

 obtain the initial vectors satisfying the necessary
 independence criteria.
 =-4 rank of boundary condition matrix A is less than NIC,
 as determined by DLSSUD.
 =-2 invalid input parameters.
 =-1 insufficient number of storage locations allocated for
 WORK or IWORK.

 =0 indicates successful solution.

 =1 a computed solution is returned but uniqueness of the
 solution of the boundary-value problem is questionable.
 For an eigenvalue problem, this should be treated as a
 successful execution since this is the expected mode
 of return.
 =2 a computed solution is returned but the existence of the
 solution to the boundary-value problem is questionable.
 =3 a nontrivial solution approximation is returned although
 the boundary condition matrix B*Y(XFINAL) is found to be
 nonsingular (to the desired accuracy level) while the
 right hand side vector is zero. To eliminate this type
 of return, the accuracy of the eigenvalue parameter
 must be improved.
 ***NOTE-We attempt to diagnose the correct problem behavior
 and report possible difficulties by the appropriate
 error flag. However, the user should probably resolve
 the problem using smaller error tolerances and/or
 perturbations in the boundary conditions or other
 parameters. This will often reveal the correct
 interpretation for the problem posed.

 =13 maximum number of orthonormalizations attained before
 reaching XFINAL.
 =20-flag from integrator (DDERKF or DDEABM) values can
 range from 21 to 25.
 =30 solution vectors form a dependent set.

 WORK(1),...,WORK(IWORK(1)) = orthonormalization points
 determined by DBVPOR.

 IWORK(1) = number of orthonormalizations performed by DBVPOR.

 IWORK(2) = maximum number of orthonormalizations allowed as
 calculated from storage allocated by user.

 IWORK(3),IWORK(4),IWORK(5),IWORK(6) give information about
 actual storage requirements for WORK and IWORK
 arrays. In particular,
 required storage for work array is
 IWORK(3) + IWORK(4)*(expected number of orthonormalizations)

 required storage for IWORK array is
 IWORK(5) + IWORK(6)*(expected number of orthonormalizations)

 IWORK(8) = final value of exponent parameter used in tolerance
 test for orthonormalization.

 IWORK(16) = number of independent vectors returned from DMGSBV.
 It is only of interest when IFLAG=30 is obtained.

SLATEC3 (DACOSH through DS2Y) - 107

 IWORK(17) = numerically estimated rank of the boundary
 condition matrix defined from B*Y(XFINAL)

 **

 Necessary machine constants are defined in the Function
 Routine D1MACH. The user must make sure that the values
 set in D1MACH are relevant to the computer being used.

 **
 **

 ***REFERENCES M. R. Scott and H. A. Watts, SUPORT - a computer code
 for two-point boundary-value problems via
 orthonormalization, SIAM Journal of Numerical
 Analysis 14, (1977), pp. 40-70.
 B. L. Darlow, M. R. Scott and H. A. Watts, Modifications
 of SUPORT, a linear boundary value problem solver
 Part I - pre-assigning orthonormalization points,
 auxiliary initial value problem, disk or tape storage,
 Report SAND77-1328, Sandia Laboratories, Albuquerque,
 New Mexico, 1977.
 B. L. Darlow, M. R. Scott and H. A. Watts, Modifications
 of SUPORT, a linear boundary value problem solver
 Part II - inclusion of an Adams integrator, Report
 SAND77-1690, Sandia Laboratories, Albuquerque,
 New Mexico, 1977.
 M. E. Lord and H. A. Watts, Modifications of SUPORT,
 a linear boundary value problem solver Part III -
 orthonormalization improvements, Report SAND78-0522,
 Sandia Laboratories, Albuquerque, New Mexico, 1978.
 H. A. Watts, M. R. Scott and M. E. Lord, Computational
 solution of complex*16 valued boundary problems,
 Report SAND78-1501, Sandia Laboratories,
 Albuquerque, New Mexico, 1978.
 ***ROUTINES CALLED DEXBVP, DMACON, XERMSG
 ***COMMON BLOCKS DML15T, DML17B, DML18J, DML5MC, DML8SZ
 ***REVISION HISTORY (YYMMDD)
 750601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890921 Realigned order of variables in certain COMMON blocks.
 (WRB)
 890921 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls, remove some extraneous
 comments. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 108

DCBRT

 DOUBLE PRECISION FUNCTION DCBRT (X)
 ***BEGIN PROLOGUE DCBRT
 ***PURPOSE Compute the cube root.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C2
 ***TYPE DOUBLE PRECISION (CBRT-S, DCBRT-D, CCBRT-C)
 ***KEYWORDS CUBE ROOT, ELEMENTARY FUNCTIONS, FNLIB, ROOTS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DCBRT(X) calculates the double precision cube root for
 double precision argument X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9PAK, D9UPAK
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 109

DCDOT

 SUBROUTINE DCDOT (N, FM, CX, INCX, CY, INCY, DCR, DCI)
 ***BEGIN PROLOGUE DCDOT
 ***PURPOSE Compute the inner product of two vectors with extended
 precision accumulation and result.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A4
 ***TYPE COMPLEX (DSDOT-D, DCDOT-C)
 ***KEYWORDS BLAS, COMPLEX VECTORS, DOT PRODUCT, INNER PRODUCT,
 LINEAR ALGEBRA, VECTOR
 ***AUTHOR (UNKNOWN)
 ***DESCRIPTION

 Compute the dot product of 2 complex vectors, CX and CY, e.g.
 CX DOT CY, or, CXconjugate DOT CY. The real and imaginary
 parts of CX and CY are converted to double precision, the dot
 product accumulation is done in double precision and the output
 is given as 2 double precision numbers, corresponding to the real
 and imaginary part of the result.
 Input
 N: Number of complex components of CX and CY.
 FM: =+1.0 compute CX DOT CY.
 =-1.0 compute CXconjugate DOT CY.
 CX(N):
 CY(N): Complex arrays of length N.
 INCX:(Integer) Spacing of elements of CX to use
 INCY:(Integer) Spacing of elements of CY to use.
 Output
 DCR:(Double Precision) Real part of dot product.
 DCI:(Double Precision) Imaginary part of dot product.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 110

DCG

 SUBROUTINE DCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ,
 $ RWORK, IWORK)
 ***BEGIN PROLOGUE DCG
 ***PURPOSE Preconditioned Conjugate Gradient Sparse Ax=b Solver.
 Routine to solve a symmetric positive definite linear
 system Ax = b using the Preconditioned Conjugate
 Gradient method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2B4
 ***TYPE DOUBLE PRECISION (SCG-S, DCG-D)
 ***KEYWORDS ITERATIVE PRECONDITION, SLAP, SPARSE,
 SYMMETRIC LINEAR SYSTEM
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
 DOUBLE PRECISION P(N), DZ(N), RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL DCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ,
 $ RWORK, IWORK)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 Y = A*X given A and X. The name of the MATVEC routine must

SLATEC3 (DACOSH through DS2Y) - 111

 be declared external in the calling program. The calling
 sequence to MATVEC is:

 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)

 Where N is the number of unknowns, Y is the product A*X
 upon return X is an input vector, NELT is the number of
 non-zeros in the SLAP IA, JA, A storage for the matrix A.
 ISYM is a flag which, if non-zero, denotest that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for
 Z given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:

 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)

 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a double precision array
 that can be used to pass necessary preconditioning information
 and/or workspace to MSOLVE. IWORK is an integer work array
 for the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.

SLATEC3 (DACOSH through DS2Y) - 112

 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Double Precision R(N).
 Z :WORK Double Precision Z(N).
 P :WORK Double Precision P(N).
 DZ :WORK Double Precision DZ(N).
 Double Precision arrays used for workspace.
 RWORK :WORK Double Precision RWORK(USER DEFINED).
 Double Precision array that can be used by MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used by MSOLVE.

 *Description
 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK in some fashion. The SLAP
 routines DSDCG and DSICCG are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11

SLATEC3 (DACOSH through DS2Y) - 113

 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the double pre-
 cision array A. In other words, for each column in the
 matrix first put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
 th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
 are the last elements of the ICOL-th column. Note that we
 always have JA(N+1)=NELT+1, where N is the number of columns
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSDCG, DSICCG
 ***REFERENCES 1. Louis Hageman and David Young, Applied Iterative
 Methods, Academic Press, New York, 1981.
 2. Concus, Golub and O'Leary, A Generalized Conjugate
 Gradient Method for the Numerical Solution of
 Elliptic Partial Differential Equations, in Sparse
 Matrix Computations, Bunch and Rose, Eds., Academic
 Press, New York, 1979.
 3. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED D1MACH, DAXPY, DCOPY, DDOT, ISDCG
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)

SLATEC3 (DACOSH through DS2Y) - 114

 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 115

DCGN

 SUBROUTINE DCGN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
 $ MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
 $ Z, P, ATP, ATZ, DZ, ATDZ, RWORK, IWORK)
 ***BEGIN PROLOGUE DCGN
 ***PURPOSE Preconditioned CG Sparse Ax=b Solver for Normal Equations.
 Routine to solve a general linear system Ax = b using the
 Preconditioned Conjugate Gradient method applied to the
 normal equations AA'y = b, x=A'y.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SCGN-S, DCGN-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 NORMAL EQUATIONS., SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
 DOUBLE PRECISION P(N), ATP(N), ATZ(N), DZ(N), ATDZ(N)
 DOUBLE PRECISION RWORK(USER DEFINED)
 EXTERNAL MATVEC, MTTVEC, MSOLVE

 CALL DCGN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
 $ MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
 $ Z, P, ATP, ATZ, DZ, ATDZ, RWORK, IWORK)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply

SLATEC3 (DACOSH through DS2Y) - 116

 y = A*X given A and X. The name of the MATVEC routine must
 be declared external in the calling program. The calling
 sequence to MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X
 upon return X is an input vector, NELT is the number of
 non-zeros in the SLAP-Column IA, JA, A storage for the matrix
 A. ISYM is a flag which, if non-zero, denotes that A is
 symmetric and only the lower or upper triangle is stored.
 MTTVEC :EXT External.
 Name of a routine which performs the matrix transpose vector
 multiply y = A'*X given A and X (where ' denotes transpose).
 The name of the MTTVEC routine must be declared external in
 the calling program. The calling sequence to MTTVEC is the
 same as that for MATVEC, viz.:
 CALL MTTVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A'*X
 upon return X is an input vector, NELT is the number of
 non-zeros in the SLAP-Column IA, JA, A storage for the matrix
 A. ISYM is a flag which, if non-zero, denotes that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for
 Z given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a double precision array
 that can be used to pass necessary preconditioning information
 and/or workspace to MSOLVE. IWORK is an integer work array
 for the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)

SLATEC3 (DACOSH through DS2Y) - 117

 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Double Precision R(N).
 Z :WORK Double Precision Z(N).
 P :WORK Double Precision P(N).
 ATP :WORK Double Precision ATP(N).
 ATZ :WORK Double Precision ATZ(N).
 DZ :WORK Double Precision DZ(N).
 ATDZ :WORK Double Precision ATDZ(N).
 Double Precision arrays used for workspace.
 RWORK :WORK Double Precision RWORK(USER DEFINED).
 Double Precision array that can be used by MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used by MSOLVE.

 *Description:
 This routine applies the preconditioned conjugate gradient
 (PCG) method to a non-symmetric system of equations Ax=b. To
 do this the normal equations are solved:
 AA' y = b, where x = A'y.
 In PCG method the iteration count is determined by condition
 -1
 number of the matrix (M A). In the situation where the
 normal equations are used to solve a non-symmetric system
 the condition number depends on AA' and should therefore be
 much worse than that of A. This is the conventional wisdom.
 When one has a good preconditioner for AA' this may not hold.
 The latter is the situation when DCGN should be tried.

 If one is trying to solve a symmetric system, SCG should be
 used instead.

 This routine does not care what matrix data structure is
 used for A and M. It simply calls MATVEC, MTTVEC and MSOLVE
 routines, with arguments as described above. The user could
 write any type of structure, and appropriate MATVEC, MTTVEC
 and MSOLVE routines. It is assumed that A is stored in the

SLATEC3 (DACOSH through DS2Y) - 118

 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK) in some fashion. The SLAP
 routines SSDCGN and SSLUCN are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the double pre-
 cision array A. In other words, for each column in the
 matrix first put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
 th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
 are the last elements of the ICOL-th column. Note that we
 always have JA(N+1)=NELT+1, where N is the number of columns
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3

SLATEC3 (DACOSH through DS2Y) - 119

 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSDCGN, DSLUCN, ISDCGN
 ***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED D1MACH, DAXPY, DCOPY, DDOT, ISDCGN
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC, MTTVEC and MSOLVE from ROUTINES CALLED
 list. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 120

DCGS

 SUBROUTINE DCGS(N, B, X, NELT, IA, JA, A, ISYM, MATVEC,
 $ MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ R, R0, P, Q, U, V1, V2, RWORK, IWORK)
 ***BEGIN PROLOGUE DCGS
 ***PURPOSE Preconditioned BiConjugate Gradient Squared Ax=b Solver.
 Routine to solve a Non-Symmetric linear system Ax = b
 using the Preconditioned BiConjugate Gradient Squared
 method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SCGS-S, DCGS-D)
 ***KEYWORDS BICONJUGATE GRADIENT, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), R0(N), P(N)
 DOUBLE PRECISION Q(N), U(N), V1(N), V2(N), RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL DCGS(N, B, X, NELT, IA, JA, A, ISYM, MATVEC,
 $ MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ R, R0, P, Q, U, V1, V2, RWORK, IWORK)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 operation Y = A*X given A and X. The name of the MATVEC

SLATEC3 (DACOSH through DS2Y) - 121

 routine must be declared external in the calling program.
 The calling sequence of MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X upon
 return, X is an input vector. NELT, IA, JA, A and ISYM
 define the SLAP matrix data structure: see Description,below.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for Z
 given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine
 must be declared external in the calling program. The
 calling sequence of MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector, and Z is the solution upon return. NELT, IA, JA, A
 and ISYM define the SLAP matrix data structure: see
 Description, below. RWORK is a double precision array that
 can be used to pass necessary preconditioning information and/
 or workspace to MSOLVE. IWORK is an integer work array for
 the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 This routine must calculate the residual from R = A*X - B.
 This is unnatural and hence expensive for this type of iter-
 ative method. ITOL=2 is *STRONGLY* recommended.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv time a vector is the pre-
 conditioning step. This is the *NATURAL* stopping for this
 iterative method and is *STRONGLY* recommended.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.

SLATEC3 (DACOSH through DS2Y) - 122

 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Breakdown of the method detected.
 (r0,r) approximately 0.
 IERR = 6 => Stagnation of the method detected.
 (r0,v) approximately 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Double Precision R(N).
 R0 :WORK Double Precision R0(N).
 P :WORK Double Precision P(N).
 Q :WORK Double Precision Q(N).
 U :WORK Double Precision U(N).
 V1 :WORK Double Precision V1(N).
 V2 :WORK Double Precision V2(N).
 Double Precision arrays used for workspace.
 RWORK :WORK Double Precision RWORK(USER DEFINED).
 Double Precision array that can be used for workspace in
 MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used for workspace in MSOLVE.

 *Description
 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK in some fashion. The SLAP
 routines DSDBCG and DSLUCS are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1

SLATEC3 (DACOSH through DS2Y) - 123

 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the double pre-
 cision array A. In other words, for each column in the
 matrix first put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
 th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
 are the last elements of the ICOL-th column. Note that we
 always have JA(N+1)=NELT+1, where N is the number of columns
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSDCGS, DSLUCS
 ***REFERENCES 1. P. Sonneveld, CGS, a fast Lanczos-type solver
 for nonsymmetric linear systems, Delft University
 of Technology Report 84-16, Department of Mathe-
 matics and Informatics, Delft, The Netherlands.
 2. E. F. Kaasschieter, The solution of non-symmetric
 linear systems by biconjugate gradients or conjugate
 gradients squared, Delft University of Technology
 Report 86-21, Department of Mathematics and Informa-
 tics, Delft, The Netherlands.
 3. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED D1MACH, DAXPY, DDOT, ISDCGS
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC

SLATEC3 (DACOSH through DS2Y) - 124

 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 125

DCHDC

 SUBROUTINE DCHDC (A, LDA, P, WORK, JPVT, JOB, INFO)
 ***BEGIN PROLOGUE DCHDC
 ***PURPOSE Compute the Cholesky decomposition of a positive definite
 matrix. A pivoting option allows the user to estimate the
 condition number of a positive definite matrix or determine
 the rank of a positive semidefinite matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE DOUBLE PRECISION (SCHDC-S, DCHDC-D, CCHDC-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE
 ***AUTHOR Dongarra, J., (ANL)
 Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 DCHDC computes the Cholesky decomposition of a positive definite
 matrix. A pivoting option allows the user to estimate the
 condition of a positive definite matrix or determine the rank
 of a positive semidefinite matrix.

 On Entry

 A DOUBLE PRECISION(LDA,P).
 A contains the matrix whose decomposition is to
 be computed. Only the upper half of A need be stored.
 The lower part of the array A is not referenced.

 LDA INTEGER.
 LDA is the leading dimension of the array A.

 P INTEGER.
 P is the order of the matrix.

 WORK DOUBLE PRECISION.
 WORK is a work array.

 JPVT INTEGER(P).
 JPVT contains integers that control the selection
 of the pivot elements, if pivoting has been requested.
 Each diagonal element A(K,K)
 is placed in one of three classes according to the
 value of JPVT(K).

 If JPVT(K) .GT. 0, then X(K) is an initial
 element.

 If JPVT(K) .EQ. 0, then X(K) is a free element.

 If JPVT(K) .LT. 0, then X(K) is a final element.

 Before the decomposition is computed, initial elements
 are moved by symmetric row and column interchanges to
 the beginning of the array A and final
 elements to the end. Both initial and final elements
 are frozen in place during the computation and only
 free elements are moved. At the K-th stage of the

SLATEC3 (DACOSH through DS2Y) - 126

 reduction, if A(K,K) is occupied by a free element
 it is interchanged with the largest free element
 A(L,L) with L .GE. K. JPVT is not referenced if
 JOB .EQ. 0.

 JOB INTEGER.
 JOB is an integer that initiates column pivoting.
 If JOB .EQ. 0, no pivoting is done.
 If JOB .NE. 0, pivoting is done.

 On Return

 A A contains in its upper half the Cholesky factor
 of the matrix A as it has been permuted by pivoting.

 JPVT JPVT(J) contains the index of the diagonal element
 of a that was moved into the J-th position,
 provided pivoting was requested.

 INFO contains the index of the last positive diagonal
 element of the Cholesky factor.

 For positive definite matrices INFO = P is the normal return.
 For pivoting with positive semidefinite matrices INFO will
 in general be less than P. However, INFO may be greater than
 the rank of A, since rounding error can cause an otherwise zero
 element to be positive. Indefinite systems will always cause
 INFO to be less than P.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSWAP
 ***REVISION HISTORY (YYMMDD)
 790319 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 127

DCHDD

 SUBROUTINE DCHDD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S, INFO)
 ***BEGIN PROLOGUE DCHDD
 ***PURPOSE Downdate an augmented Cholesky decomposition or the
 triangular factor of an augmented QR decomposition.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE DOUBLE PRECISION (SCHDD-S, DCHDD-D, CCHDD-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, DOWNDATE, LINEAR ALGEBRA, LINPACK,
 MATRIX
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 DCHDD downdates an augmented Cholesky decomposition or the
 triangular factor of an augmented QR decomposition.
 Specifically, given an upper triangular matrix R of order P, a
 row vector X, a column vector Z, and a scalar Y, DCHDD
 determines an orthogonal matrix U and a scalar ZETA such that

 (R Z) (RR ZZ)
 U * () = () ,
 (0 ZETA) (X Y)

 where RR is upper triangular. If R and Z have been obtained
 from the factorization of a least squares problem, then
 RR and ZZ are the factors corresponding to the problem
 with the observation (X,Y) removed. In this case, if RHO
 is the norm of the residual vector, then the norm of
 the residual vector of the downdated problem is
 SQRT(RHO**2 - ZETA**2). DCHDD will simultaneously downdate
 several triplets (Z,Y,RHO) along with R.
 For a less terse description of what DCHDD does and how
 it may be applied, see the LINPACK guide.

 The matrix U is determined as the product U(1)*...*U(P)
 where U(I) is a rotation in the (P+1,I)-plane of the
 form

 (C(I) -S(I))
 () .
 (S(I) C(I))

 The rotations are chosen so that C(I) is double precision.

 The user is warned that a given downdating problem may
 be impossible to accomplish or may produce
 inaccurate results. For example, this can happen
 if X is near a vector whose removal will reduce the
 rank of R. Beware.

 On Entry

 R DOUBLE PRECISION(LDR,P), where LDR .GE. P.
 R contains the upper triangular matrix
 that is to be downdated. The part of R
 below the diagonal is not referenced.

SLATEC3 (DACOSH through DS2Y) - 128

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 P INTEGER.
 P is the order of the matrix R.

 X DOUBLE PRECISION(P).
 X contains the row vector that is to
 be removed from R. X is not altered by DCHDD.

 Z DOUBLE PRECISION(LDZ,N)Z), where LDZ .GE. P.
 Z is an array of NZ P-vectors which
 are to be downdated along with R.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of vectors to be downdated
 NZ may be zero, in which case Z, Y, and RHO
 are not referenced.

 Y DOUBLE PRECISION(NZ).
 Y contains the scalars for the downdating
 of the vectors Z. Y is not altered by DCHDD.

 RHO DOUBLE PRECISION(NZ).
 RHO contains the norms of the residual
 vectors that are to be downdated.

 On Return

 R
 Z contain the downdated quantities.
 RHO

 C DOUBLE PRECISION(P).
 C contains the cosines of the transforming
 rotations.

 S DOUBLE PRECISION(P).
 S contains the sines of the transforming
 rotations.

 INFO INTEGER.
 INFO is set as follows.

 INFO = 0 if the entire downdating
 was successful.

 INFO =-1 if R could not be downdated.
 in this case, all quantities
 are left unaltered.

 INFO = 1 if some RHO could not be
 downdated. The offending RHO's are
 set to -1.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.

SLATEC3 (DACOSH through DS2Y) - 129

 ***ROUTINES CALLED DDOT, DNRM2
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 130

DCHEX

 SUBROUTINE DCHEX (R, LDR, P, K, L, Z, LDZ, NZ, C, S, JOB)
 ***BEGIN PROLOGUE DCHEX
 ***PURPOSE Update the Cholesky factorization A=TRANS(R)*R of a
 positive definite matrix A of order P under diagonal
 permutations of the form TRANS(E)*A*E, where E is a
 permutation matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE DOUBLE PRECISION (SCHEX-S, DCHEX-D, CCHEX-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, EXCHANGE, LINEAR ALGEBRA, LINPACK,
 MATRIX, POSITIVE DEFINITE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 DCHEX updates the Cholesky factorization

 A = TRANS(R)*R

 of a positive definite matrix A of order P under diagonal
 permutations of the form

 TRANS(E)*A*E

 where E is a permutation matrix. Specifically, given
 an upper triangular matrix R and a permutation matrix
 E (which is specified by K, L, and JOB), DCHEX determines
 an orthogonal matrix U such that

 U*R*E = RR,

 where RR is upper triangular. At the users option, the
 transformation U will be multiplied into the array Z.
 If A = TRANS(X)*X, so that R is the triangular part of the
 QR factorization of X, then RR is the triangular part of the
 QR factorization of X*E, i.e. X with its columns permuted.
 For a less terse description of what DCHEX does and how
 it may be applied, see the LINPACK guide.

 The matrix Q is determined as the product U(L-K)*...*U(1)
 of plane rotations of the form

 (C(I) S(I))
 () ,
 (-S(I) C(I))

 where C(I) is double precision. The rows these rotations operate
 on are described below.

 There are two types of permutations, which are determined
 by the value of JOB.

 1. Right circular shift (JOB = 1).

 The columns are rearranged in the following order.

 1,...,K-1,L,K,K+1,...,L-1,L+1,...,P.

SLATEC3 (DACOSH through DS2Y) - 131

 U is the product of L-K rotations U(I), where U(I)
 acts in the (L-I,L-I+1)-plane.

 2. Left circular shift (JOB = 2).
 The columns are rearranged in the following order

 1,...,K-1,K+1,K+2,...,L,K,L+1,...,P.

 U is the product of L-K rotations U(I), where U(I)
 acts in the (K+I-1,K+I)-plane.

 On Entry

 R DOUBLE PRECISION(LDR,P), where LDR .GE. P.
 R contains the upper triangular factor
 that is to be updated. Elements of R
 below the diagonal are not referenced.

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 P INTEGER.
 P is the order of the matrix R.

 K INTEGER.
 K is the first column to be permuted.

 L INTEGER.
 L is the last column to be permuted.
 L must be strictly greater than K.

 Z DOUBLE PRECISION(LDZ,N)Z), where LDZ .GE. P.
 Z is an array of NZ P-vectors into which the
 transformation U is multiplied. Z is
 not referenced if NZ = 0.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of columns of the matrix Z.

 JOB INTEGER.
 JOB determines the type of permutation.
 JOB = 1 right circular shift.
 JOB = 2 left circular shift.

 On Return

 R contains the updated factor.

 Z contains the updated matrix Z.

 C DOUBLE PRECISION(P).
 C contains the cosines of the transforming rotations.

 S DOUBLE PRECISION(P).
 S contains the sines of the transforming rotations.

SLATEC3 (DACOSH through DS2Y) - 132

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DROTG
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 133

DCHFDV

 SUBROUTINE DCHFDV (X1, X2, F1, F2, D1, D2, NE, XE, FE, DE, NEXT,
 + IERR)
 ***BEGIN PROLOGUE DCHFDV
 ***PURPOSE Evaluate a cubic polynomial given in Hermite form and its
 first derivative at an array of points. While designed for
 use by DPCHFD, it may be useful directly as an evaluator
 for a piecewise cubic Hermite function in applications,
 such as graphing, where the interval is known in advance.
 If only function values are required, use DCHFEV instead.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3, H1
 ***TYPE DOUBLE PRECISION (CHFDV-S, DCHFDV-D)
 ***KEYWORDS CUBIC HERMITE DIFFERENTIATION, CUBIC HERMITE EVALUATION,
 CUBIC POLYNOMIAL EVALUATION, PCHIP
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DCHFDV: Cubic Hermite Function and Derivative Evaluator

 Evaluates the cubic polynomial determined by function values
 F1,F2 and derivatives D1,D2 on interval (X1,X2), together with
 its first derivative, at the points XE(J), J=1(1)NE.

 If only function values are required, use DCHFEV, instead.

 --

 Calling sequence:

 INTEGER NE, NEXT(2), IERR
 DOUBLE PRECISION X1, X2, F1, F2, D1, D2, XE(NE), FE(NE),
 DE(NE)

 CALL DCHFDV (X1,X2, F1,F2, D1,D2, NE, XE, FE, DE, NEXT, IERR)

 Parameters:

 X1,X2 -- (input) endpoints of interval of definition of cubic.
 (Error return if X1.EQ.X2 .)

 F1,F2 -- (input) values of function at X1 and X2, respectively.

 D1,D2 -- (input) values of derivative at X1 and X2, respectively.

 NE -- (input) number of evaluation points. (Error return if
 NE.LT.1 .)

 XE -- (input) real*8 array of points at which the functions are to
 be evaluated. If any of the XE are outside the interval
 [X1,X2], a warning error is returned in NEXT.

 FE -- (output) real*8 array of values of the cubic function

SLATEC3 (DACOSH through DS2Y) - 134

 defined by X1,X2, F1,F2, D1,D2 at the points XE.

 DE -- (output) real*8 array of values of the first derivative of
 the same function at the points XE.

 NEXT -- (output) integer array indicating number of extrapolation
 points:
 NEXT(1) = number of evaluation points to left of interval.
 NEXT(2) = number of evaluation points to right of interval.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if NE.LT.1 .
 IERR = -2 if X1.EQ.X2 .
 (Output arrays have not been changed in either case.)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 811019 DATE WRITTEN
 820803 Minor cosmetic changes for release 1.
 870707 Corrected XERROR calls for d.p. names(s).
 870813 Minor cosmetic changes.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 135

DCHFEV

 SUBROUTINE DCHFEV (X1, X2, F1, F2, D1, D2, NE, XE, FE, NEXT, IERR)
 ***BEGIN PROLOGUE DCHFEV
 ***PURPOSE Evaluate a cubic polynomial given in Hermite form at an
 array of points. While designed for use by DPCHFE, it may
 be useful directly as an evaluator for a piecewise cubic
 Hermite function in applications, such as graphing, where
 the interval is known in advance.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3
 ***TYPE DOUBLE PRECISION (CHFEV-S, DCHFEV-D)
 ***KEYWORDS CUBIC HERMITE EVALUATION, CUBIC POLYNOMIAL EVALUATION,
 PCHIP
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DCHFEV: Cubic Hermite Function EValuator

 Evaluates the cubic polynomial determined by function values
 F1,F2 and derivatives D1,D2 on interval (X1,X2) at the points
 XE(J), J=1(1)NE.

 --

 Calling sequence:

 INTEGER NE, NEXT(2), IERR
 DOUBLE PRECISION X1, X2, F1, F2, D1, D2, XE(NE), FE(NE)

 CALL DCHFEV (X1,X2, F1,F2, D1,D2, NE, XE, FE, NEXT, IERR)

 Parameters:

 X1,X2 -- (input) endpoints of interval of definition of cubic.
 (Error return if X1.EQ.X2 .)

 F1,F2 -- (input) values of function at X1 and X2, respectively.

 D1,D2 -- (input) values of derivative at X1 and X2, respectively.

 NE -- (input) number of evaluation points. (Error return if
 NE.LT.1 .)

 XE -- (input) real*8 array of points at which the function is to
 be evaluated. If any of the XE are outside the interval
 [X1,X2], a warning error is returned in NEXT.

 FE -- (output) real*8 array of values of the cubic function
 defined by X1,X2, F1,F2, D1,D2 at the points XE.

 NEXT -- (output) integer array indicating number of extrapolation
 points:
 NEXT(1) = number of evaluation points to left of interval.

SLATEC3 (DACOSH through DS2Y) - 136

 NEXT(2) = number of evaluation points to right of interval.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if NE.LT.1 .
 IERR = -2 if X1.EQ.X2 .
 (The FE-array has not been changed in either case.)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 811019 DATE WRITTEN
 820803 Minor cosmetic changes for release 1.
 870813 Corrected XERROR calls for d.p. names(s).
 890206 Corrected XERROR calls.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 137

DCHU

 DOUBLE PRECISION FUNCTION DCHU (A, B, X)
 ***BEGIN PROLOGUE DCHU
 ***PURPOSE Compute the logarithmic confluent hypergeometric function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C11
 ***TYPE DOUBLE PRECISION (CHU-S, DCHU-D)
 ***KEYWORDS FNLIB, LOGARITHMIC CONFLUENT HYPERGEOMETRIC FUNCTION,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DCHU(A,B,X) calculates the double precision logarithmic confluent
 hypergeometric function U(A,B,X) for double precision arguments
 A, B, and X.

 This routine is not valid when 1+A-B is close to zero if X is small.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9CHU, DEXPRL, DGAMMA, DGAMR, DPOCH,
 DPOCH1, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 138

DCHUD

 SUBROUTINE DCHUD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S)
 ***BEGIN PROLOGUE DCHUD
 ***PURPOSE Update an augmented Cholesky decomposition of the
 triangular part of an augmented QR decomposition.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE DOUBLE PRECISION (SCHUD-S, DCHUD-D, CCHUD-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
 UPDATE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 DCHUD updates an augmented Cholesky decomposition of the
 triangular part of an augmented QR decomposition. Specifically,
 given an upper triangular matrix R of order P, a row vector
 X, a column vector Z, and a scalar Y, DCHUD determines a
 unitary matrix U and a scalar ZETA such that

 (R Z) (RR ZZ)
 U * () = () ,
 (X Y) (0 ZETA)

 where RR is upper triangular. If R and Z have been
 obtained from the factorization of a least squares
 problem, then RR and ZZ are the factors corresponding to
 the problem with the observation (X,Y) appended. In this
 case, if RHO is the norm of the residual vector, then the
 norm of the residual vector of the updated problem is
 SQRT(RHO**2 + ZETA**2). DCHUD will simultaneously update
 several triplets (Z,Y,RHO).
 For a less terse description of what DCHUD does and how
 it may be applied, see the LINPACK guide.

 The matrix U is determined as the product U(P)*...*U(1),
 where U(I) is a rotation in the (I,P+1) plane of the
 form

 (C(I) S(I))
 () .
 (-S(I) C(I))

 The rotations are chosen so that C(I) is double precision.

 On Entry

 R DOUBLE PRECISION(LDR,P), where LDR .GE. P.
 R contains the upper triangular matrix
 that is to be updated. The part of R
 below the diagonal is not referenced.

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 P INTEGER.
 P is the order of the matrix R.

SLATEC3 (DACOSH through DS2Y) - 139

 X DOUBLE PRECISION(P).
 X contains the row to be added to R. X is
 not altered by DCHUD.

 Z DOUBLE PRECISION(LDZ,N)Z), where LDZ .GE. P.
 Z is an array containing NZ P-vectors to
 be updated with R.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of vectors to be updated
 NZ may be zero, in which case Z, Y, and RHO
 are not referenced.

 Y DOUBLE PRECISION(NZ).
 Y contains the scalars for updating the vectors
 Z. Y is not altered by DCHUD.

 RHO DOUBLE PRECISION(NZ).
 RHO contains the norms of the residual
 vectors that are to be updated. If RHO(J)
 is negative, it is left unaltered.

 On Return

 RC
 RHO contain the updated quantities.
 Z

 C DOUBLE PRECISION(P).
 C contains the cosines of the transforming
 rotations.

 S DOUBLE PRECISION(P).
 S contains the sines of the transforming
 rotations.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DROTG
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 140

DCKDER

 SUBROUTINE DCKDER (M, N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE,
 + ERR)
 ***BEGIN PROLOGUE DCKDER
 ***PURPOSE Check the gradients of M nonlinear functions in N
 variables, evaluated at a point X, for consistency
 with the functions themselves.
 ***LIBRARY SLATEC
 ***CATEGORY F3, G4C
 ***TYPE DOUBLE PRECISION (CHKDER-S, DCKDER-D)
 ***KEYWORDS GRADIENTS, JACOBIAN, MINPACK, NONLINEAR
 ***AUTHOR Hiebert, K. L. (SNLA)
 ***DESCRIPTION

 This subroutine is a companion routine to DNSQ and DNSQE. It may
 be used to check the coding of the Jacobian calculation.

 SUBROUTINE DCKDER

 This subroutine checks the gradients of M nonlinear functions
 in N variables, evaluated at a point X, for consistency with
 the functions themselves. The user must call DCKDER twice,
 first with MODE = 1 and then with MODE = 2.

 MODE = 1. On input, X must contain the point of evaluation.
 On output, XP is set to a neighboring point.

 MODE = 2. On input, FVEC must contain the functions and the
 rows of FJAC must contain the gradients
 of the respective functions each evaluated
 at X, and FVECP must contain the functions
 evaluated at XP.
 On output, ERR contains measures of correctness of
 the respective gradients.

 The subroutine does not perform reliably if cancellation or
 rounding errors cause a severe loss of significance in the
 evaluation of a function. Therefore, none of the components
 of X should be unusually small (in particular, zero) or any
 other value which may cause loss of significance.

 The SUBROUTINE statement is

 SUBROUTINE DCKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)

 where

 M is a positive integer input variable set to the number
 of functions.

 N is a positive integer input variable set to the number
 of variables.

 X is an input array of length N.

 FVEC is an array of length M. On input when MODE = 2,
 FVEC must contain the functions evaluated at X.

SLATEC3 (DACOSH through DS2Y) - 141

 FJAC is an M by N array. On input when MODE = 2,
 the rows of FJAC must contain the gradients of
 the respective functions evaluated at X.

 LDFJAC is a positive integer input parameter not less than M
 which specifies the leading dimension of the array FJAC.

 XP is an array of length N. On output when MODE = 1,
 XP is set to a neighboring point of X.

 FVECP is an array of length M. On input when MODE = 2,
 FVECP must contain the functions evaluated at XP.

 MODE is an integer input variable set to 1 on the first call
 and 2 on the second. Other values of MODE are equivalent
 to MODE = 1.

 ERR is an array of length M. On output when MODE = 2,
 ERR contains measures of correctness of the respective
 gradients. If there is no severe loss of significance,
 then if ERR(I) is 1.0 the I-th gradient is correct,
 while if ERR(I) is 0.0 the I-th gradient is incorrect.
 For values of ERR between 0.0 and 1.0, the categorization
 is less certain. In general, a value of ERR(I) greater
 than 0.5 indicates that the I-th gradient is probably
 correct, while a value of ERR(I) less than 0.5 indicates
 that the I-th gradient is probably incorrect.

 ***REFERENCES M. J. D. Powell, A hybrid method for nonlinear equa-
 tions. In Numerical Methods for Nonlinear Algebraic
 Equations, P. Rabinowitz, Editor. Gordon and Breach,
 1988.
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 142

DCOPY

 SUBROUTINE DCOPY (N, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE DCOPY
 ***PURPOSE Copy a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE DOUBLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I)
 ***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DX double precision vector with N elements
 INCX storage spacing between elements of DX
 DY double precision vector with N elements
 INCY storage spacing between elements of DY

 --Output--
 DY copy of vector DX (unchanged if N .LE. 0)

 Copy double precision DX to double precision DY.
 For I = 0 to N-1, copy DX(LX+I*INCX) to DY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 143

DCOPYM

 SUBROUTINE DCOPYM (N, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE DCOPYM
 ***PURPOSE Copy the negative of a vector to a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE DOUBLE PRECISION (SCOPYM-S, DCOPYM-D)
 ***KEYWORDS BLAS, COPY, VECTOR
 ***AUTHOR Kahaner, D. K., (NBS)
 ***DESCRIPTION

 Description of Parameters
 The * Flags Output Variables

 N Number of elements in vector(s)
 DX Double precision vector with N elements
 INCX Storage spacing between elements of DX
 DY* Double precision negative copy of DX
 INCY Storage spacing between elements of DY

 *** Note that DY = -DX ***

 Copy negative of d.p. DX to d.p. DY. For I=0 to N-1,
 copy -DX(LX+I*INCX) to DY(LY+I*INCY), where LX=1 if
 INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is defined
 in a similar way using INCY.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 144

DCOSDG

 DOUBLE PRECISION FUNCTION DCOSDG (X)
 ***BEGIN PROLOGUE DCOSDG
 ***PURPOSE Compute the cosine of an argument in degrees.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE DOUBLE PRECISION (COSDG-S, DCOSDG-D)
 ***KEYWORDS COSINE, DEGREES, ELEMENTARY FUNCTIONS, FNLIB,
 TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DCOSDG(X) calculates the double precision trigonometric cosine
 for double precision argument X in units of degrees.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 145

DCOT

 DOUBLE PRECISION FUNCTION DCOT (X)
 ***BEGIN PROLOGUE DCOT
 ***PURPOSE Compute the cotangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE DOUBLE PRECISION (COT-S, DCOT-D, CCOT-C)
 ***KEYWORDS COTANGENT, ELEMENTARY FUNCTIONS, FNLIB, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DCOT(X) calculates the double precision trigonometric cotangent
 for double precision argument X. X is in units of radians.

 Series for COT on the interval 0. to 6.25000E-02
 with weighted error 5.52E-34
 log weighted error 33.26
 significant figures required 32.34
 decimal places required 33.85

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 146

DCOV

 SUBROUTINE DCOV (FCN, IOPT, M, N, X, FVEC, R, LDR, INFO, WA1, WA2,
 + WA3, WA4)
 ***BEGIN PROLOGUE DCOV
 ***PURPOSE Calculate the covariance matrix for a nonlinear data
 fitting problem. It is intended to be used after a
 successful return from either DNLS1 or DNLS1E.
 ***LIBRARY SLATEC
 ***CATEGORY K1B1
 ***TYPE DOUBLE PRECISION (SCOV-S, DCOV-D)
 ***KEYWORDS COVARIANCE MATRIX, NONLINEAR DATA FITTING,
 NONLINEAR LEAST SQUARES
 ***AUTHOR Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 1. Purpose.

 DCOV calculates the covariance matrix for a nonlinear data
 fitting problem. It is intended to be used after a
 successful return from either DNLS1 or DNLS1E. DCOV
 and DNLS1 (and DNLS1E) have compatible parameters. The
 required external subroutine, FCN, is the same
 for all three codes, DCOV, DNLS1, and DNLS1E.

 2. Subroutine and Type Statements.

 SUBROUTINE DCOV(FCN,IOPT,M,N,X,FVEC,R,LDR,INFO,
 WA1,WA2,WA3,WA4)
 INTEGER IOPT,M,N,LDR,INFO
 DOUBLE PRECISION X(N),FVEC(M),R(LDR,N),WA1(N),WA2(N),WA3(N),WA4(M)
 EXTERNAL FCN

 3. Parameters. All TYPE REAL parameters are DOUBLE PRECISION

 FCN is the name of the user-supplied subroutine which calculates
 the functions. If the user wants to supply the Jacobian
 (IOPT=2 or 3), then FCN must be written to calculate the
 Jacobian, as well as the functions. See the explanation
 of the IOPT argument below.
 If the user wants the iterates printed in DNLS1 or DNLS1E,
 then FCN must do the printing. See the explanation of NPRINT
 in DNLS1 or DNLS1E. FCN must be declared in an EXTERNAL
 statement in the calling program and should be written as
 follows.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 INTEGER IFLAG,LDFJAC,M,N
 DOUBLE PRECISION X(N),FVEC(M)

 FJAC and LDFJAC may be ignored , if IOPT=1.
 DOUBLE PRECISION FJAC(LDFJAC,N) , if IOPT=2.
 DOUBLE PRECISION FJAC(N) , if IOPT=3.

 If IFLAG=0, the values in X and FVEC are available
 for printing in DNLS1 or DNLS1E.
 IFLAG will never be zero when FCN is called by DCOV.
 The values of X and FVEC must not be changed.

SLATEC3 (DACOSH through DS2Y) - 147

 RETURN

 If IFLAG=1, calculate the functions at X and return
 this vector in FVEC.
 RETURN

 If IFLAG=2, calculate the full Jacobian at X and return
 this matrix in FJAC. Note that IFLAG will never be 2 unless
 IOPT=2. FVEC contains the function values at X and must
 not be altered. FJAC(I,J) must be set to the derivative
 of FVEC(I) with respect to X(J).
 RETURN

 If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
 and return this vector in FJAC. Note that IFLAG will
 never be 3 unless IOPT=3. FJAC(J) must be set to
 the derivative of FVEC(LDFJAC) with respect to X(J).
 RETURN

 END

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of DCOV. In this case, set
 IFLAG to a negative integer.

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=2 or 3, then the user must supply the
 Jacobian, as well as the function values, through the
 subroutine FCN. If IOPT=2, the user supplies the full
 Jacobian with one call to FCN. If IOPT=3, the user supplies
 one row of the Jacobian with each call. (In this manner,
 storage can be saved because the full Jacobian is not stored.)
 If IOPT=1, the code will approximate the Jacobian by forward
 differencing.

 M is a positive integer input variable set to the number of
 functions.

 N is a positive integer input variable set to the number of
 variables. N must not exceed M.

 X is an array of length N. On input X must contain the value
 at which the covariance matrix is to be evaluated. This is
 usually the value for X returned from a successful run of
 DNLS1 (or DNLS1E). The value of X will not be changed.

 FVEC is an output array of length M which contains the functions
 evaluated at X.

 R is an output array. For IOPT=1 and 2, R is an M by N array.
 For IOPT=3, R is an N by N array. On output, if INFO=1,
 the upper N by N submatrix of R contains the covariance
 matrix evaluated at X.

 LDR is a positive integer input variable which specifies
 the leading dimension of the array R. For IOPT=1 and 2,
 LDR must not be less than M. For IOPT=3, LDR must not
 be less than N.

SLATEC3 (DACOSH through DS2Y) - 148

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN. Otherwise, INFO is set as follows.

 INFO = 0 Improper input parameters (M.LE.0 or N.LE.0).

 INFO = 1 Successful return. The covariance matrix has been
 calculated and stored in the upper N by N
 submatrix of R.

 INFO = 2 The Jacobian matrix is singular for the input value
 of X. The covariance matrix cannot be calculated.
 The upper N by N submatrix of R contains the QR
 factorization of the Jacobian (probably not of
 interest to the user).

 WA1,WA2 are work arrays of length N.
 and WA3

 WA4 is a work array of length M.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DENORM, DFDJC3, DQRFAC, DWUPDT, XERMSG
 ***REVISION HISTORY (YYMMDD)
 810522 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Fixed an error message. (RWC)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 149

DCPPLT

 SUBROUTINE DCPPLT (N, NELT, IA, JA, A, ISYM, IUNIT)
 ***BEGIN PROLOGUE DCPPLT
 ***PURPOSE Printer Plot of SLAP Column Format Matrix.
 Routine to print out a SLAP Column format matrix in a
 "printer plot" graphical representation.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY N1
 ***TYPE DOUBLE PRECISION (SCPPLT-S, DCPPLT-D)
 ***KEYWORDS DIAGNOSTICS, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT
 DOUBLE PRECISION A(NELT)

 CALL DCPPLT(N, NELT, IA, JA, A, ISYM, IUNIT)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 If N.gt.MAXORD, only the leading MAXORD x MAXORD
 submatrix will be printed. (Currently MAXORD = 225.)
 NELT :IN Integer.
 Number of non-zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP
 Column format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 IUNIT :IN Integer.
 Fortran logical I/O device unit number to write the matrix
 to. This unit must be connected in a system dependent fashion
 to a file or the console or you will get a nasty message
 from the Fortran I/O libraries.

 *Description:
 This routine prints out a SLAP Column format matrix to the
 Fortran logical I/O unit number IUNIT. The numbers them
 selves are not printed out, but rather a one character
 representation of the numbers. Elements of the matrix that
 are not represented in the (IA,JA,A) arrays are denoted by
 ' ' character (a blank). Elements of A that are *ZERO* (and
 hence should really not be stored) are denoted by a '0'
 character. Elements of A that are *POSITIVE* are denoted by
 'D' if they are Diagonal elements and '#' if they are off
 Diagonal elements. Elements of A that are *NEGATIVE* are

SLATEC3 (DACOSH through DS2Y) - 150

 denoted by 'N' if they are Diagonal elements and '*' if
 they are off Diagonal elements.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 *Portability:
 This routine, as distributed, can generate lines up to 229
 characters long. Some Fortran systems have more restricted
 line lengths. Change parameter MAXORD and the large number
 in FORMAT 1010 to reduce this line length.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921007 Replaced hard-wired 225 with parameter MAXORD. (FNF)
 921021 Corrected syntax of CHARACTER declaration. (FNF)

SLATEC3 (DACOSH through DS2Y) - 151

 921026 Corrected D to E in output format. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 152

DCSEVL

 DOUBLE PRECISION FUNCTION DCSEVL (X, CS, N)
 ***BEGIN PROLOGUE DCSEVL
 ***PURPOSE Evaluate a Chebyshev series.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C3A2
 ***TYPE DOUBLE PRECISION (CSEVL-S, DCSEVL-D)
 ***KEYWORDS CHEBYSHEV SERIES, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate the N-term Chebyshev series CS at X. Adapted from
 a method presented in the paper by Broucke referenced below.

 Input Arguments --
 X value at which the series is to be evaluated.
 CS array of N terms of a Chebyshev series. In evaluating
 CS, only half the first coefficient is summed.
 N number of terms in array CS.

 ***REFERENCES R. Broucke, Ten subroutines for the manipulation of
 Chebyshev series, Algorithm 446, Communications of
 the A.C.M. 16, (1973) pp. 254-256.
 L. Fox and I. B. Parker, Chebyshev Polynomials in
 Numerical Analysis, Oxford University Press, 1968,
 page 56.
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900329 Prologued revised extensively and code rewritten to allow
 X to be slightly outside interval (-1,+1). (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 153

DCV

 SUBROUTINE DCV (XVAL, NDATA, NCONST, NORD, NBKPT,
 + BKPT, W)
 ***BEGIN PROLOGUE DCV
 ***PURPOSE Evaluate the variance function of the curve obtained
 by the constrained B-spline fitting subprogram DFC.
 ***LIBRARY SLATEC
 ***CATEGORY L7A3
 ***TYPE DOUBLE PRECISION (CV-S, DCV-D)
 ***KEYWORDS ANALYSIS OF COVARIANCE, B-SPLINE,
 CONSTRAINED LEAST SQUARES, CURVE FITTING
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DCV() is a companion function subprogram for DFC(). The
 documentation for DFC() has complete usage instructions.

 DCV() is used to evaluate the variance function of the curve
 obtained by the constrained B-spline fitting subprogram, DFC().
 The variance function defines the square of the probable error
 of the fitted curve at any point, XVAL. One can use the square
 root of this variance function to determine a probable error band
 around the fitted curve.

 DCV() is used after a call to DFC(). MODE, an input variable to
 DFC(), is used to indicate if the variance function is desired.
 In order to use DCV(), MODE must equal 2 or 4 on input to DFC().
 MODE is also used as an output flag from DFC(). Check to make
 sure that MODE = 0 after calling DFC(), indicating a successful
 constrained curve fit. The array SDDATA, as input to DFC(), must
 also be defined with the standard deviation or uncertainty of the
 Y values to use DCV().

 To evaluate the variance function after calling DFC() as stated
 above, use DCV() as shown here

 VAR=DCV(XVAL,NDATA,NCONST,NORD,NBKPT,BKPT,W)

 The variance function is given by

 VAR=(transpose of B(XVAL))*C*B(XVAL)/DBLE(MAX(NDATA-N,1))

 where N = NBKPT - NORD.

 The vector B(XVAL) is the B-spline basis function values at
 X=XVAL. The covariance matrix, C, of the solution coefficients
 accounts only for the least squares equations and the explicitly
 stated equality constraints. This fact must be considered when
 interpreting the variance function from a data fitting problem
 that has inequality constraints on the fitted curve.

 All the variables in the calling sequence for DCV() are used in
 DFC() except the variable XVAL. Do not change the values of
 these variables between the call to DFC() and the use of DCV().

 The following is a brief description of the variables

SLATEC3 (DACOSH through DS2Y) - 154

 XVAL The point where the variance is desired, a double
 precision variable.

 NDATA The number of discrete (X,Y) pairs for which DFC()
 calculated a piece-wise polynomial curve.

 NCONST The number of conditions that constrained the B-spline in
 DFC().

 NORD The order of the B-spline used in DFC().
 The value of NORD must satisfy 1 < NORD < 20 .

 (The order of the spline is one more than the degree of
 the piece-wise polynomial defined on each interval. This
 is consistent with the B-spline package convention. For
 example, NORD=4 when we are using piece-wise cubics.)

 NBKPT The number of knots in the array BKPT(*).
 The value of NBKPT must satisfy NBKPT .GE. 2*NORD.

 BKPT(*) The double precision array of knots. Normally the problem
 data interval will be included between the limits
 BKPT(NORD) and BKPT(NBKPT-NORD+1). The additional end
 knots BKPT(I),I=1,...,NORD-1 and I=NBKPT-NORD+2,...,NBKPT,
 are required by DFC() to compute the functions used to
 fit the data.

 W(*) Double precision work array as used in DFC(). See DFC()
 for the required length of W(*). The contents of W(*)
 must not be modified by the user if the variance function
 is desired.

 ***REFERENCES R. J. Hanson, Constrained least squares curve fitting
 to discrete data using B-splines, a users guide,
 Report SAND78-1291, Sandia Laboratories, December
 1978.
 ***ROUTINES CALLED DDOT, DFSPVN
 ***REVISION HISTORY (YYMMDD)
 780801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 155

DDASSL

 SUBROUTINE DDASSL (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,
 * IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC)
 ***BEGIN PROLOGUE DDASSL
 ***PURPOSE This code solves a system of differential/algebraic
 equations of the form G(T,Y,YPRIME) = 0.
 ***LIBRARY SLATEC (DASSL)
 ***CATEGORY I1A2
 ***TYPE DOUBLE PRECISION (SDASSL-S, DDASSL-D)
 ***KEYWORDS BACKWARD DIFFERENTIATION FORMULAS, DASSL,
 DIFFERENTIAL/ALGEBRAIC, IMPLICIT DIFFERENTIAL SYSTEMS
 ***AUTHOR Petzold, Linda R., (LLNL)
 Computing and Mathematics Research Division
 Lawrence Livermore National Laboratory
 L - 316, P.O. Box 808,
 Livermore, CA. 94550
 ***DESCRIPTION

 *Usage:

 EXTERNAL RES, JAC
 INTEGER NEQ, INFO(N), IDID, LRW, LIW, IWORK(LIW), IPAR
 DOUBLE PRECISION T, Y(NEQ), YPRIME(NEQ), TOUT, RTOL, ATOL,
 * RWORK(LRW), RPAR

 CALL DDASSL (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,
 * IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC)

 *Arguments:
 (In the following, all real arrays should be type DOUBLE PRECISION.)

 RES:EXT This is a subroutine which you provide to define the
 differential/algebraic system.

 NEQ:IN This is the number of equations to be solved.

 T:INOUT This is the current value of the independent variable.

 Y(*):INOUT This array contains the solution components at T.

 YPRIME(*):INOUT This array contains the derivatives of the solution
 components at T.

 TOUT:IN This is a point at which a solution is desired.

 INFO(N):IN The basic task of the code is to solve the system from T
 to TOUT and return an answer at TOUT. INFO is an integer
 array which is used to communicate exactly how you want
 this task to be carried out. (See below for details.)
 N must be greater than or equal to 15.

 RTOL,ATOL:INOUT These quantities represent relative and absolute
 error tolerances which you provide to indicate how
 accurately you wish the solution to be computed. You
 may choose them to be both scalars or else both vectors.
 Caution: In Fortran 77, a scalar is not the same as an

SLATEC3 (DACOSH through DS2Y) - 156

 array of length 1. Some compilers may object
 to using scalars for RTOL,ATOL.

 IDID:OUT This scalar quantity is an indicator reporting what the
 code did. You must monitor this integer variable to
 decide what action to take next.

 RWORK:WORK A real work array of length LRW which provides the
 code with needed storage space.

 LRW:IN The length of RWORK. (See below for required length.)

 IWORK:WORK An integer work array of length LIW which provides the
 code with needed storage space.

 LIW:IN The length of IWORK. (See below for required length.)

 RPAR,IPAR:IN These are real and integer parameter arrays which
 you can use for communication between your calling
 program and the RES subroutine (and the JAC subroutine)

 JAC:EXT This is the name of a subroutine which you may choose
 to provide for defining a matrix of partial derivatives
 described below.

 Quantities which may be altered by DDASSL are:
 T, Y(*), YPRIME(*), INFO(1), RTOL, ATOL,
 IDID, RWORK(*) AND IWORK(*)

 *Description

 Subroutine DDASSL uses the backward differentiation formulas of
 orders one through five to solve a system of the above form for Y and
 YPRIME. Values for Y and YPRIME at the initial time must be given as
 input. These values must be consistent, (that is, if T,Y,YPRIME are
 the given initial values, they must satisfy G(T,Y,YPRIME) = 0.). The
 subroutine solves the system from T to TOUT. It is easy to continue
 the solution to get results at additional TOUT. This is the interval
 mode of operation. Intermediate results can also be obtained easily
 by using the intermediate-output capability.

 The following detailed description is divided into subsections:
 1. Input required for the first call to DDASSL.
 2. Output after any return from DDASSL.
 3. What to do to continue the integration.
 4. Error messages.

 -------- INPUT -- WHAT TO DO ON THE FIRST CALL TO DDASSL ------------

 The first call of the code is defined to be the start of each new
 problem. Read through the descriptions of all the following items,
 provide sufficient storage space for designated arrays, set
 appropriate variables for the initialization of the problem, and
 give information about how you want the problem to be solved.

 RES -- Provide a subroutine of the form
 SUBROUTINE RES(T,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
 to define the system of differential/algebraic

SLATEC3 (DACOSH through DS2Y) - 157

 equations which is to be solved. For the given values
 of T,Y and YPRIME, the subroutine should
 return the residual of the differential/algebraic
 system
 DELTA = G(T,Y,YPRIME)
 (DELTA(*) is a vector of length NEQ which is
 output for RES.)

 Subroutine RES must not alter T,Y or YPRIME.
 You must declare the name RES in an external
 statement in your program that calls DDASSL.
 You must dimension Y,YPRIME and DELTA in RES.

 IRES is an integer flag which is always equal to
 zero on input. Subroutine RES should alter IRES
 only if it encounters an illegal value of Y or
 a stop condition. Set IRES = -1 if an input value
 is illegal, and DDASSL will try to solve the problem
 without getting IRES = -1. If IRES = -2, DDASSL
 will return control to the calling program
 with IDID = -11.

 RPAR and IPAR are real and integer parameter arrays which
 you can use for communication between your calling program
 and subroutine RES. They are not altered by DDASSL. If you
 do not need RPAR or IPAR, ignore these parameters by treat-
 ing them as dummy arguments. If you do choose to use them,
 dimension them in your calling program and in RES as arrays
 of appropriate length.

 NEQ -- Set it to the number of differential equations.
 (NEQ .GE. 1)

 T -- Set it to the initial point of the integration.
 T must be defined as a variable.

 Y(*) -- Set this vector to the initial values of the NEQ solution
 components at the initial point. You must dimension Y of
 length at least NEQ in your calling program.

 YPRIME(*) -- Set this vector to the initial values of the NEQ
 first derivatives of the solution components at the initial
 point. You must dimension YPRIME at least NEQ in your
 calling program. If you do not know initial values of some
 of the solution components, see the explanation of INFO(11).

 TOUT -- Set it to the first point at which a solution
 is desired. You can not take TOUT = T.
 integration either forward in T (TOUT .GT. T) or
 backward in T (TOUT .LT. T) is permitted.

 The code advances the solution from T to TOUT using
 step sizes which are automatically selected so as to
 achieve the desired accuracy. If you wish, the code will
 return with the solution and its derivative at
 intermediate steps (intermediate-output mode) so that
 you can monitor them, but you still must provide TOUT in
 accord with the basic aim of the code.

 The first step taken by the code is a critical one

SLATEC3 (DACOSH through DS2Y) - 158

 because it must reflect how fast the solution changes near
 the initial point. The code automatically selects an
 initial step size which is practically always suitable for
 the problem. By using the fact that the code will not step
 past TOUT in the first step, you could, if necessary,
 restrict the length of the initial step size.

 For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP. When you have declared a TSTOP point (SEE INFO(4)
 and RWORK(1)), you have told the code not to integrate
 past TSTOP. In this case any TOUT beyond TSTOP is invalid
 input.

 INFO(*) -- Use the INFO array to give the code more details about
 how you want your problem solved. This array should be
 dimensioned of length 15, though DDASSL uses only the first
 eleven entries. You must respond to all of the following
 items, which are arranged as questions. The simplest use
 of the code corresponds to answering all questions as yes,
 i.e. setting all entries of INFO to 0.

 INFO(1) - This parameter enables the code to initialize
 itself. You must set it to indicate the start of every
 new problem.

 **** Is this the first call for this problem ...
 Yes - Set INFO(1) = 0
 No - Not applicable here.
 See below for continuation calls. ****

 INFO(2) - How much accuracy you want of your solution
 is specified by the error tolerances RTOL and ATOL.
 The simplest use is to take them both to be scalars.
 To obtain more flexibility, they can both be vectors.
 The code must be told your choice.

 **** Are both error tolerances RTOL, ATOL scalars ...
 Yes - Set INFO(2) = 0
 and input scalars for both RTOL and ATOL
 No - Set INFO(2) = 1
 and input arrays for both RTOL and ATOL ****

 INFO(3) - The code integrates from T in the direction
 of TOUT by steps. If you wish, it will return the
 computed solution and derivative at the next
 intermediate step (the intermediate-output mode) or
 TOUT, whichever comes first. This is a good way to
 proceed if you want to see the behavior of the solution.
 If you must have solutions at a great many specific
 TOUT points, this code will compute them efficiently.

 **** Do you want the solution only at
 TOUT (and not at the next intermediate step) ...
 Yes - Set INFO(3) = 0
 No - Set INFO(3) = 1 ****

 INFO(4) - To handle solutions at a great many specific
 values TOUT efficiently, this code may integrate past

SLATEC3 (DACOSH through DS2Y) - 159

 TOUT and interpolate to obtain the result at TOUT.
 Sometimes it is not possible to integrate beyond some
 point TSTOP because the equation changes there or it is
 not defined past TSTOP. Then you must tell the code
 not to go past.

 **** Can the integration be carried out without any
 restrictions on the independent variable T ...
 Yes - Set INFO(4)=0
 No - Set INFO(4)=1
 and define the stopping point TSTOP by
 setting RWORK(1)=TSTOP ****

 INFO(5) - To solve differential/algebraic problems it is
 necessary to use a matrix of partial derivatives of the
 system of differential equations. If you do not
 provide a subroutine to evaluate it analytically (see
 description of the item JAC in the call list), it will
 be approximated by numerical differencing in this code.
 although it is less trouble for you to have the code
 compute partial derivatives by numerical differencing,
 the solution will be more reliable if you provide the
 derivatives via JAC. Sometimes numerical differencing
 is cheaper than evaluating derivatives in JAC and
 sometimes it is not - this depends on your problem.

 **** Do you want the code to evaluate the partial
 derivatives automatically by numerical differences ...
 Yes - Set INFO(5)=0
 No - Set INFO(5)=1
 and provide subroutine JAC for evaluating the
 matrix of partial derivatives ****

 INFO(6) - DDASSL will perform much better if the matrix of
 partial derivatives, DG/DY + CJ*DG/DYPRIME,
 (here CJ is a scalar determined by DDASSL)
 is banded and the code is told this. In this
 case, the storage needed will be greatly reduced,
 numerical differencing will be performed much cheaper,
 and a number of important algorithms will execute much
 faster. The differential equation is said to have
 half-bandwidths ML (lower) and MU (upper) if equation i
 involves only unknowns Y(J) with
 I-ML .LE. J .LE. I+MU
 for all I=1,2,...,NEQ. Thus, ML and MU are the widths
 of the lower and upper parts of the band, respectively,
 with the main diagonal being excluded. If you do not
 indicate that the equation has a banded matrix of partial
 derivatives, the code works with a full matrix of NEQ**2
 elements (stored in the conventional way). Computations
 with banded matrices cost less time and storage than with
 full matrices if 2*ML+MU .LT. NEQ. If you tell the
 code that the matrix of partial derivatives has a banded
 structure and you want to provide subroutine JAC to
 compute the partial derivatives, then you must be careful
 to store the elements of the matrix in the special form
 indicated in the description of JAC.

 **** Do you want to solve the problem using a full
 (dense) matrix (and not a special banded

SLATEC3 (DACOSH through DS2Y) - 160

 structure) ...
 Yes - Set INFO(6)=0
 No - Set INFO(6)=1
 and provide the lower (ML) and upper (MU)
 bandwidths by setting
 IWORK(1)=ML
 IWORK(2)=MU ****

 INFO(7) -- You can specify a maximum (absolute value of)
 stepsize, so that the code
 will avoid passing over very
 large regions.

 **** Do you want the code to decide
 on its own maximum stepsize?
 Yes - Set INFO(7)=0
 No - Set INFO(7)=1
 and define HMAX by setting
 RWORK(2)=HMAX ****

 INFO(8) -- Differential/algebraic problems
 may occasionally suffer from
 severe scaling difficulties on the
 first step. If you know a great deal
 about the scaling of your problem, you can
 help to alleviate this problem by
 specifying an initial stepsize HO.

 **** Do you want the code to define
 its own initial stepsize?
 Yes - Set INFO(8)=0
 No - Set INFO(8)=1
 and define HO by setting
 RWORK(3)=HO ****

 INFO(9) -- If storage is a severe problem,
 you can save some locations by
 restricting the maximum order MAXORD.
 the default value is 5. for each
 order decrease below 5, the code
 requires NEQ fewer locations, however
 it is likely to be slower. In any
 case, you must have 1 .LE. MAXORD .LE. 5
 **** Do you want the maximum order to
 default to 5?
 Yes - Set INFO(9)=0
 No - Set INFO(9)=1
 and define MAXORD by setting
 IWORK(3)=MAXORD ****

 INFO(10) --If you know that the solutions to your equations
 will always be nonnegative, it may help to set this
 parameter. However, it is probably best to
 try the code without using this option first,
 and only to use this option if that doesn't
 work very well.
 **** Do you want the code to solve the problem without
 invoking any special nonnegativity constraints?
 Yes - Set INFO(10)=0

SLATEC3 (DACOSH through DS2Y) - 161

 No - Set INFO(10)=1

 INFO(11) --DDASSL normally requires the initial T,
 Y, and YPRIME to be consistent. That is,
 you must have G(T,Y,YPRIME) = 0 at the initial
 time. If you do not know the initial
 derivative precisely, you can let DDASSL try
 to compute it.
 **** Are the initial T, Y, YPRIME consistent?
 Yes - Set INFO(11) = 0
 No - Set INFO(11) = 1,
 and set YPRIME to an initial approximation
 to YPRIME. (If you have no idea what
 YPRIME should be, set it to zero. Note
 that the initial Y should be such
 that there must exist a YPRIME so that
 G(T,Y,YPRIME) = 0.)

 RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL
 error tolerances to tell the code how accurately you
 want the solution to be computed. They must be defined
 as variables because the code may change them. You
 have two choices --
 Both RTOL and ATOL are scalars. (INFO(2)=0)
 Both RTOL and ATOL are vectors. (INFO(2)=1)
 in either case all components must be non-negative.

 The tolerances are used by the code in a local error
 test at each step which requires roughly that
 ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
 for each vector component.
 (More specifically, a root-mean-square norm is used to
 measure the size of vectors, and the error test uses the
 magnitude of the solution at the beginning of the step.)

 The true (global) error is the difference between the
 true solution of the initial value problem and the
 computed approximation. Practically all present day
 codes, including this one, control the local error at
 each step and do not even attempt to control the global
 error directly.
 Usually, but not always, the true accuracy of the
 computed Y is comparable to the error tolerances. This
 code will usually, but not always, deliver a more
 accurate solution if you reduce the tolerances and
 integrate again. By comparing two such solutions you
 can get a fairly reliable idea of the true error in the
 solution at the bigger tolerances.

 Setting ATOL=0. results in a pure relative error test on
 that component. Setting RTOL=0. results in a pure
 absolute error test on that component. A mixed test
 with non-zero RTOL and ATOL corresponds roughly to a
 relative error test when the solution component is much
 bigger than ATOL and to an absolute error test when the
 solution component is smaller than the threshhold ATOL.

 The code will not attempt to compute a solution at an
 accuracy unreasonable for the machine being used. It will
 advise you if you ask for too much accuracy and inform

SLATEC3 (DACOSH through DS2Y) - 162

 you as to the maximum accuracy it believes possible.

 RWORK(*) -- Dimension this real work array of length LRW in your
 calling program.

 LRW -- Set it to the declared length of the RWORK array.
 You must have
 LRW .GE. 40+(MAXORD+4)*NEQ+NEQ**2
 for the full (dense) JACOBIAN case (when INFO(6)=0), or
 LRW .GE. 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ
 for the banded user-defined JACOBIAN case
 (when INFO(5)=1 and INFO(6)=1), or
 LRW .GE. 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ
 +2*(NEQ/(ML+MU+1)+1)
 for the banded finite-difference-generated JACOBIAN case
 (when INFO(5)=0 and INFO(6)=1)

 IWORK(*) -- Dimension this integer work array of length LIW in
 your calling program.

 LIW -- Set it to the declared length of the IWORK array.
 You must have LIW .GE. 20+NEQ

 RPAR, IPAR -- These are parameter arrays, of real and integer
 type, respectively. You can use them for communication
 between your program that calls DDASSL and the
 RES subroutine (and the JAC subroutine). They are not
 altered by DDASSL. If you do not need RPAR or IPAR,
 ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension
 them in your calling program and in RES (and in JAC)
 as arrays of appropriate length.

 JAC -- If you have set INFO(5)=0, you can ignore this parameter
 by treating it as a dummy argument. Otherwise, you must
 provide a subroutine of the form
 SUBROUTINE JAC(T,Y,YPRIME,PD,CJ,RPAR,IPAR)
 to define the matrix of partial derivatives
 PD=DG/DY+CJ*DG/DYPRIME
 CJ is a scalar which is input to JAC.
 For the given values of T,Y,YPRIME, the
 subroutine must evaluate the non-zero partial
 derivatives for each equation and each solution
 component, and store these values in the
 matrix PD. The elements of PD are set to zero
 before each call to JAC so only non-zero elements
 need to be defined.

 Subroutine JAC must not alter T,Y,(*),YPRIME(*), or CJ.
 You must declare the name JAC in an EXTERNAL statement in
 your program that calls DDASSL. You must dimension Y,
 YPRIME and PD in JAC.

 The way you must store the elements into the PD matrix
 depends on the structure of the matrix which you
 indicated by INFO(6).
 *** INFO(6)=0 -- Full (dense) matrix ***
 Give PD a first dimension of NEQ.
 When you evaluate the (non-zero) partial derivative
 of equation I with respect to variable J, you must

SLATEC3 (DACOSH through DS2Y) - 163

 store it in PD according to
 PD(I,J) = "DG(I)/DY(J)+CJ*DG(I)/DYPRIME(J)"
 *** INFO(6)=1 -- Banded JACOBIAN with ML lower and MU
 upper diagonal bands (refer to INFO(6) description
 of ML and MU) ***
 Give PD a first dimension of 2*ML+MU+1.
 when you evaluate the (non-zero) partial derivative
 of equation I with respect to variable J, you must
 store it in PD according to
 IROW = I - J + ML + MU + 1
 PD(IROW,J) = "DG(I)/DY(J)+CJ*DG(I)/DYPRIME(J)"

 RPAR and IPAR are real and integer parameter arrays
 which you can use for communication between your calling
 program and your JACOBIAN subroutine JAC. They are not
 altered by DDASSL. If you do not need RPAR or IPAR,
 ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension
 them in your calling program and in JAC as arrays of
 appropriate length.

 OPTIONALLY REPLACEABLE NORM ROUTINE:

 DDASSL uses a weighted norm DDANRM to measure the size
 of vectors such as the estimated error in each step.
 A FUNCTION subprogram
 DOUBLE PRECISION FUNCTION DDANRM(NEQ,V,WT,RPAR,IPAR)
 DIMENSION V(NEQ),WT(NEQ)
 is used to define this norm. Here, V is the vector
 whose norm is to be computed, and WT is a vector of
 weights. A DDANRM routine has been included with DDASSL
 which computes the weighted root-mean-square norm
 given by
 DDANRM=SQRT((1/NEQ)*SUM(V(I)/WT(I))**2)
 this norm is suitable for most problems. In some
 special cases, it may be more convenient and/or
 efficient to define your own norm by writing a function
 subprogram to be called instead of DDANRM. This should,
 however, be attempted only after careful thought and
 consideration.

 -------- OUTPUT -- AFTER ANY RETURN FROM DDASSL ---------------------

 The principal aim of the code is to return a computed solution at
 TOUT, although it is also possible to obtain intermediate results
 along the way. To find out whether the code achieved its goal
 or if the integration process was interrupted before the task was
 completed, you must check the IDID parameter.

 T -- The solution was successfully advanced to the
 output value of T.

 Y(*) -- Contains the computed solution approximation at T.

 YPRIME(*) -- Contains the computed derivative
 approximation at T.

SLATEC3 (DACOSH through DS2Y) - 164

 IDID -- Reports what the code did.

 *** Task completed ***
 Reported by positive values of IDID

 IDID = 1 -- A step was successfully taken in the
 intermediate-output mode. The code has not
 yet reached TOUT.

 IDID = 2 -- The integration to TSTOP was successfully
 completed (T=TSTOP) by stepping exactly to TSTOP.

 IDID = 3 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping past TOUT.
 Y(*) is obtained by interpolation.
 YPRIME(*) is obtained by interpolation.

 *** Task interrupted ***
 Reported by negative values of IDID

 IDID = -1 -- A large amount of work has been expended.
 (About 500 steps)

 IDID = -2 -- The error tolerances are too stringent.

 IDID = -3 -- The local error test cannot be satisfied
 because you specified a zero component in ATOL
 and the corresponding computed solution
 component is zero. Thus, a pure relative error
 test is impossible for this component.

 IDID = -6 -- DDASSL had repeated error test
 failures on the last attempted step.

 IDID = -7 -- The corrector could not converge.

 IDID = -8 -- The matrix of partial derivatives
 is singular.

 IDID = -9 -- The corrector could not converge.
 there were repeated error test failures
 in this step.

 IDID =-10 -- The corrector could not converge
 because IRES was equal to minus one.

 IDID =-11 -- IRES equal to -2 was encountered
 and control is being returned to the
 calling program.

 IDID =-12 -- DDASSL failed to compute the initial
 YPRIME.

 IDID = -13,..,-32 -- Not applicable for this code

 *** Task terminated ***
 Reported by the value of IDID=-33

SLATEC3 (DACOSH through DS2Y) - 165

 IDID = -33 -- The code has encountered trouble from which
 it cannot recover. A message is printed
 explaining the trouble and control is returned
 to the calling program. For example, this occurs
 when invalid input is detected.

 RTOL, ATOL -- These quantities remain unchanged except when
 IDID = -2. In this case, the error tolerances have been
 increased by the code to values which are estimated to
 be appropriate for continuing the integration. However,
 the reported solution at T was obtained using the input
 values of RTOL and ATOL.

 RWORK, IWORK -- Contain information which is usually of no
 interest to the user but necessary for subsequent calls.
 However, you may find use for

 RWORK(3)--Which contains the step size H to be
 attempted on the next step.

 RWORK(4)--Which contains the current value of the
 independent variable, i.e., the farthest point
 integration has reached. This will be different
 from T only when interpolation has been
 performed (IDID=3).

 RWORK(7)--Which contains the stepsize used
 on the last successful step.

 IWORK(7)--Which contains the order of the method to
 be attempted on the next step.

 IWORK(8)--Which contains the order of the method used
 on the last step.

 IWORK(11)--Which contains the number of steps taken so
 far.

 IWORK(12)--Which contains the number of calls to RES
 so far.

 IWORK(13)--Which contains the number of evaluations of
 the matrix of partial derivatives needed so
 far.

 IWORK(14)--Which contains the total number
 of error test failures so far.

 IWORK(15)--Which contains the total number
 of convergence test failures so far.
 (includes singular iteration matrix
 failures.)

 -------- INPUT -- WHAT TO DO TO CONTINUE THE INTEGRATION ------------
 (CALLS AFTER THE FIRST)

 This code is organized so that subsequent calls to continue the
 integration involve little (if any) additional effort on your
 part. You must monitor the IDID parameter in order to determine

SLATEC3 (DACOSH through DS2Y) - 166

 what to do next.

 Recalling that the principal task of the code is to integrate
 from T to TOUT (the interval mode), usually all you will need
 to do is specify a new TOUT upon reaching the current TOUT.

 Do not alter any quantity not specifically permitted below,
 in particular do not alter NEQ,T,Y(*),YPRIME(*),RWORK(*),IWORK(*)
 or the differential equation in subroutine RES. Any such
 alteration constitutes a new problem and must be treated as such,
 i.e., you must start afresh.

 You cannot change from vector to scalar error control or vice
 versa (INFO(2)), but you can change the size of the entries of
 RTOL, ATOL. Increasing a tolerance makes the equation easier
 to integrate. Decreasing a tolerance will make the equation
 harder to integrate and should generally be avoided.

 You can switch from the intermediate-output mode to the
 interval mode (INFO(3)) or vice versa at any time.

 If it has been necessary to prevent the integration from going
 past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
 code will not integrate to any TOUT beyond the currently
 specified TSTOP. Once TSTOP has been reached you must change
 the value of TSTOP or set INFO(4)=0. You may change INFO(4)
 or TSTOP at any time but you must supply the value of TSTOP in
 RWORK(1) whenever you set INFO(4)=1.

 Do not change INFO(5), INFO(6), IWORK(1), or IWORK(2)
 unless you are going to restart the code.

 *** Following a completed task ***
 If
 IDID = 1, call the code again to continue the integration
 another step in the direction of TOUT.

 IDID = 2 or 3, define a new TOUT and call the code again.
 TOUT must be different from T. You cannot change
 the direction of integration without restarting.

 *** Following an interrupted task ***
 To show the code that you realize the task was
 interrupted and that you want to continue, you
 must take appropriate action and set INFO(1) = 1
 If
 IDID = -1, The code has taken about 500 steps.
 If you want to continue, set INFO(1) = 1 and
 call the code again. An additional 500 steps
 will be allowed.

 IDID = -2, The error tolerances RTOL, ATOL have been
 increased to values the code estimates appropriate
 for continuing. You may want to change them
 yourself. If you are sure you want to continue
 with relaxed error tolerances, set INFO(1)=1 and
 call the code again.

 IDID = -3, A solution component is zero and you set the
 corresponding component of ATOL to zero. If you

SLATEC3 (DACOSH through DS2Y) - 167

 are sure you want to continue, you must first
 alter the error criterion to use positive values
 for those components of ATOL corresponding to zero
 solution components, then set INFO(1)=1 and call
 the code again.

 IDID = -4,-5 --- Cannot occur with this code.

 IDID = -6, Repeated error test failures occurred on the
 last attempted step in DDASSL. A singularity in the
 solution may be present. If you are absolutely
 certain you want to continue, you should restart
 the integration. (Provide initial values of Y and
 YPRIME which are consistent)

 IDID = -7, Repeated convergence test failures occurred
 on the last attempted step in DDASSL. An inaccurate
 or ill-conditioned JACOBIAN may be the problem. If
 you are absolutely certain you want to continue, you
 should restart the integration.

 IDID = -8, The matrix of partial derivatives is singular.
 Some of your equations may be redundant.
 DDASSL cannot solve the problem as stated.
 It is possible that the redundant equations
 could be removed, and then DDASSL could
 solve the problem. It is also possible
 that a solution to your problem either
 does not exist or is not unique.

 IDID = -9, DDASSL had multiple convergence test
 failures, preceded by multiple error
 test failures, on the last attempted step.
 It is possible that your problem
 is ill-posed, and cannot be solved
 using this code. Or, there may be a
 discontinuity or a singularity in the
 solution. If you are absolutely certain
 you want to continue, you should restart
 the integration.

 IDID =-10, DDASSL had multiple convergence test failures
 because IRES was equal to minus one.
 If you are absolutely certain you want
 to continue, you should restart the
 integration.

 IDID =-11, IRES=-2 was encountered, and control is being
 returned to the calling program.

 IDID =-12, DDASSL failed to compute the initial YPRIME.
 This could happen because the initial
 approximation to YPRIME was not very good, or
 if a YPRIME consistent with the initial Y
 does not exist. The problem could also be caused
 by an inaccurate or singular iteration matrix.

 IDID = -13,..,-32 --- Cannot occur with this code.

SLATEC3 (DACOSH through DS2Y) - 168

 *** Following a terminated task ***

 If IDID= -33, you cannot continue the solution of this problem.
 An attempt to do so will result in your
 run being terminated.

 -------- ERROR MESSAGES ---

 The SLATEC error print routine XERMSG is called in the event of
 unsuccessful completion of a task. Most of these are treated as
 "recoverable errors", which means that (unless the user has directed
 otherwise) control will be returned to the calling program for
 possible action after the message has been printed.

 In the event of a negative value of IDID other than -33, an appro-
 priate message is printed and the "error number" printed by XERMSG
 is the value of IDID. There are quite a number of illegal input
 errors that can lead to a returned value IDID=-33. The conditions
 and their printed "error numbers" are as follows:

 Error number Condition

 1 Some element of INFO vector is not zero or one.
 2 NEQ .le. 0
 3 MAXORD not in range.
 4 LRW is less than the required length for RWORK.
 5 LIW is less than the required length for IWORK.
 6 Some element of RTOL is .lt. 0
 7 Some element of ATOL is .lt. 0
 8 All elements of RTOL and ATOL are zero.
 9 INFO(4)=1 and TSTOP is behind TOUT.
 10 HMAX .lt. 0.0
 11 TOUT is behind T.
 12 INFO(8)=1 and H0=0.0
 13 Some element of WT is .le. 0.0
 14 TOUT is too close to T to start integration.
 15 INFO(4)=1 and TSTOP is behind T.
 16 --(Not used in this version)--
 17 ML illegal. Either .lt. 0 or .gt. NEQ
 18 MU illegal. Either .lt. 0 or .gt. NEQ
 19 TOUT = T.

 If DDASSL is called again without any action taken to remove the
 cause of an unsuccessful return, XERMSG will be called with a fatal
 error flag, which will cause unconditional termination of the
 program. There are two such fatal errors:

 Error number -998: The last step was terminated with a negative
 value of IDID other than -33, and no appropriate action was
 taken.

 Error number -999: The previous call was terminated because of
 illegal input (IDID=-33) and there is illegal input in the
 present call, as well. (Suspect infinite loop.)

 ***REFERENCES A DESCRIPTION OF DASSL: A DIFFERENTIAL/ALGEBRAIC
 SYSTEM SOLVER, L. R. PETZOLD, SAND82-8637,

SLATEC3 (DACOSH through DS2Y) - 169

 SANDIA NATIONAL LABORATORIES, SEPTEMBER 1982.
 ***ROUTINES CALLED D1MACH, DDAINI, DDANRM, DDASTP, DDATRP, DDAWTS,
 XERMSG
 ***REVISION HISTORY (YYMMDD)
 830315 DATE WRITTEN
 880387 Code changes made. All common statements have been
 replaced by a DATA statement, which defines pointers into
 RWORK, and PARAMETER statements which define pointers
 into IWORK. As well the documentation has gone through
 grammatical changes.
 881005 The prologue has been changed to mixed case.
 The subordinate routines had revision dates changed to
 this date, although the documentation for these routines
 is all upper case. No code changes.
 890511 Code changes made. The DATA statement in the declaration
 section of DDASSL was replaced with a PARAMETER
 statement. Also the statement S = 100.D0 was removed
 from the top of the Newton iteration in DDASTP.
 The subordinate routines had revision dates changed to
 this date.
 890517 The revision date syntax was replaced with the revision
 history syntax. Also the "DECK" comment was added to
 the top of all subroutines. These changes are consistent
 with new SLATEC guidelines.
 The subordinate routines had revision dates changed to
 this date. No code changes.
 891013 Code changes made.
 Removed all occurrences of FLOAT or DBLE. All operations
 are now performed with "mixed-mode" arithmetic.
 Also, specific function names were replaced with generic
 function names to be consistent with new SLATEC guidelines.
 In particular:
 Replaced DSQRT with SQRT everywhere.
 Replaced DABS with ABS everywhere.
 Replaced DMIN1 with MIN everywhere.
 Replaced MIN0 with MIN everywhere.
 Replaced DMAX1 with MAX everywhere.
 Replaced MAX0 with MAX everywhere.
 Replaced DSIGN with SIGN everywhere.
 Also replaced REVISION DATE with REVISION HISTORY in all
 subordinate routines.
 901004 Miscellaneous changes to prologue to complete conversion
 to SLATEC 4.0 format. No code changes. (F.N.Fritsch)
 901009 Corrected GAMS classification code and converted subsidiary
 routines to 4.0 format. No code changes. (F.N.Fritsch)
 901010 Converted XERRWV calls to XERMSG calls. (R.Clemens, AFWL)
 901019 Code changes made.
 Merged SLATEC 4.0 changes with previous changes made
 by C. Ulrich. Below is a history of the changes made by
 C. Ulrich. (Changes in subsidiary routines are implied
 by this history)
 891228 Bug was found and repaired inside the DDASSL
 and DDAINI routines. DDAINI was incorrectly
 returning the initial T with Y and YPRIME
 computed at T+H. The routine now returns T+H
 rather than the initial T.
 Cosmetic changes made to DDASTP.
 900904 Three modifications were made to fix a bug (inside
 DDASSL) re interpolation for continuation calls and
 cases where TN is very close to TSTOP:

SLATEC3 (DACOSH through DS2Y) - 170

 1) In testing for whether H is too large, just
 compare H to (TSTOP - TN), rather than
 (TSTOP - TN) * (1-4*UROUND), and set H to
 TSTOP - TN. This will force DDASTP to step
 exactly to TSTOP under certain situations
 (i.e. when H returned from DDASTP would otherwise
 take TN beyond TSTOP).

 2) Inside the DDASTP loop, interpolate exactly to
 TSTOP if TN is very close to TSTOP (rather than
 interpolating to within roundoff of TSTOP).

 3) Modified IDID description for IDID = 2 to say
 that the solution is returned by stepping exactly
 to TSTOP, rather than TOUT. (In some cases the
 solution is actually obtained by extrapolating
 over a distance near unit roundoff to TSTOP,
 but this small distance is deemed acceptable in
 these circumstances.)
 901026 Added explicit declarations for all variables and minor
 cosmetic changes to prologue, removed unreferenced labels,
 and improved XERMSG calls. (FNF)
 901030 Added ERROR MESSAGES section and reworked other sections to
 be of more uniform format. (FNF)
 910624 Fixed minor bug related to HMAX (six lines after label
 525). (LRP)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 171

DDAWS

 DOUBLE PRECISION FUNCTION DDAWS (X)
 ***BEGIN PROLOGUE DDAWS
 ***PURPOSE Compute Dawson's function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C8C
 ***TYPE DOUBLE PRECISION (DAWS-S, DDAWS-D)
 ***KEYWORDS DAWSON'S FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DDAWS(X) calculates the double precision Dawson's integral
 for double precision argument X.

 Series for DAW on the interval 0. to 1.00000E+00
 with weighted error 8.95E-32
 log weighted error 31.05
 significant figures required 30.41
 decimal places required 31.71

 Series for DAW2 on the interval 0. to 1.60000E+01
 with weighted error 1.61E-32
 log weighted error 31.79
 significant figures required 31.40
 decimal places required 32.62

 Series for DAWA on the interval 0. to 6.25000E-02
 with weighted error 1.97E-32
 log weighted error 31.71
 significant figures required 29.79
 decimal places required 32.64

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 780401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 172

DDEABM

 SUBROUTINE DDEABM (DF, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
 + RWORK, LRW, IWORK, LIW, RPAR, IPAR)
 ***BEGIN PROLOGUE DDEABM
 ***PURPOSE Solve an initial value problem in ordinary differential
 equations using an Adams-Bashforth method.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A1B
 ***TYPE DOUBLE PRECISION (DEABM-S, DDEABM-D)
 ***KEYWORDS ADAMS-BASHFORTH METHOD, DEPAC, INITIAL VALUE PROBLEMS,
 ODE, ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR
 ***AUTHOR Shampine, L. F., (SNLA)
 Watts, H. A., (SNLA)
 ***DESCRIPTION

 This is the Adams code in the package of differential equation
 solvers DEPAC, consisting of the codes DDERKF, DDEABM, and DDEBDF.
 Design of the package was by L. F. Shampine and H. A. Watts.
 It is documented in
 SAND79-2374 , DEPAC - Design of a User Oriented Package of ODE
 Solvers.
 DDEABM is a driver for a modification of the code ODE written by
 L. F. Shampine and M. K. Gordon
 Sandia Laboratories
 Albuquerque, New Mexico 87185

 **
 * ABSTRACT *

 Subroutine DDEABM uses the Adams-Bashforth-Moulton
 Predictor-Corrector formulas of orders one through twelve to
 integrate a system of NEQ first order ordinary differential
 equations of the form
 DU/DX = DF(X,U)
 when the vector Y(*) of initial values for U(*) at X=T is given.
 The subroutine integrates from T to TOUT. It is easy to continue the
 integration to get results at additional TOUT. This is the interval
 mode of operation. It is also easy for the routine to return with
 the solution at each intermediate step on the way to TOUT. This is
 the intermediate-output mode of operation.

 DDEABM uses subprograms DDES, DSTEPS, DINTP, DHSTRT, DHVNRM,
 D1MACH, and the error handling routine XERMSG. The only machine
 dependent parameters to be assigned appear in D1MACH.

 **
 * Description of The Arguments To DDEABM (An Overview) *
 **

 The Parameters are

 DF -- This is the name of a subroutine which you provide to
 define the differential equations.

 NEQ -- This is the number of (first order) differential
 equations to be integrated.

SLATEC3 (DACOSH through DS2Y) - 173

 T -- This is a DOUBLE PRECISION value of the independent
 variable.

 Y(*) -- This DOUBLE PRECISION array contains the solution
 components at T.

 TOUT -- This is a DOUBLE PRECISION point at which a solution is
 desired.

 INFO(*) -- The basic task of the code is to integrate the
 differential equations from T to TOUT and return an
 answer at TOUT. INFO(*) is an INTEGER array which is used
 to communicate exactly how you want this task to be
 carried out.

 RTOL, ATOL -- These DOUBLE PRECISION quantities represent
 relative and absolute error tolerances which you
 provide to indicate how accurately you wish the
 solution to be computed. You may choose them to be
 both scalars or else both vectors.

 IDID -- This scalar quantity is an indicator reporting what
 the code did. You must monitor this INTEGER variable to
 decide what action to take next.

 RWORK(*), LRW -- RWORK(*) is a DOUBLE PRECISION work array of
 length LRW which provides the code with needed storage
 space.

 IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
 which provides the code with needed storage space and an
 across call flag.

 RPAR, IPAR -- These are DOUBLE PRECISION and INTEGER parameter
 arrays which you can use for communication between your
 calling program and the DF subroutine.

 Quantities which are used as input items are
 NEQ, T, Y(*), TOUT, INFO(*),
 RTOL, ATOL, RWORK(1), LRW and LIW.

 Quantities which may be altered by the code are
 T, Y(*), INFO(1), RTOL, ATOL,
 IDID, RWORK(*) and IWORK(*).

 **
 * INPUT -- What To Do On The First Call To DDEABM *
 **

 The first call of the code is defined to be the start of each new
 problem. Read through the descriptions of all the following items,
 provide sufficient storage space for designated arrays, set
 appropriate variables for the initialization of the problem, and
 give information about how you want the problem to be solved.

 DF -- Provide a subroutine of the form
 DF(X,U,UPRIME,RPAR,IPAR)
 to define the system of first order differential equations

SLATEC3 (DACOSH through DS2Y) - 174

 which is to be solved. For the given values of X and the
 vector U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
 evaluate the NEQ components of the system of differential
 equations DU/DX=DF(X,U) and store the derivatives in the
 array UPRIME(*), that is, UPRIME(I) = * DU(I)/DX * for
 equations I=1,...,NEQ.

 Subroutine DF must NOT alter X or U(*). You must declare
 the name df in an external statement in your program that
 calls DDEABM. You must dimension U and UPRIME in DF.

 RPAR and IPAR are DOUBLE PRECISION and INTEGER parameter
 arrays which you can use for communication between your
 calling program and subroutine DF. They are not used or
 altered by DDEABM. If you do not need RPAR or IPAR,
 ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension them in
 your calling program and in DF as arrays of appropriate
 length.

 NEQ -- Set it to the number of differential equations.
 (NEQ .GE. 1)

 T -- Set it to the initial point of the integration.
 You must use a program variable for T because the code
 changes its value.

 Y(*) -- Set this vector to the initial values of the NEQ solution
 components at the initial point. You must dimension Y at
 least NEQ in your calling program.

 TOUT -- Set it to the first point at which a solution
 is desired. You can take TOUT = T, in which case the code
 will evaluate the derivative of the solution at T and
 return. Integration either forward in T (TOUT .GT. T) or
 backward in T (TOUT .LT. T) is permitted.

 The code advances the solution from T to TOUT using
 step sizes which are automatically selected so as to
 achieve the desired accuracy. If you wish, the code will
 return with the solution and its derivative following
 each intermediate step (intermediate-output mode) so that
 you can monitor them, but you still must provide TOUT in
 accord with the basic aim of the code.

 The first step taken by the code is a critical one
 because it must reflect how fast the solution changes near
 the initial point. The code automatically selects an
 initial step size which is practically always suitable for
 the problem. By using the fact that the code will not step
 past TOUT in the first step, you could, if necessary,
 restrict the length of the initial step size.

 For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP. When you have declared a TSTOP point (see INFO(4)
 and RWORK(1)), you have told the code not to integrate
 past TSTOP. In this case any TOUT beyond TSTOP is invalid
 input.

SLATEC3 (DACOSH through DS2Y) - 175

 INFO(*) -- Use the INFO array to give the code more details about
 how you want your problem solved. This array should be
 dimensioned of length 15 to accommodate other members of
 DEPAC or possible future extensions, though DDEABM uses
 only the first four entries. You must respond to all of
 the following items which are arranged as questions. The
 simplest use of the code corresponds to answering all
 questions as YES ,i.e. setting ALL entries of INFO to 0.

 INFO(1) -- This parameter enables the code to initialize
 itself. You must set it to indicate the start of every
 new problem.

 **** Is this the first call for this problem ...
 YES -- set INFO(1) = 0
 NO -- not applicable here.
 See below for continuation calls. ****

 INFO(2) -- How much accuracy you want of your solution
 is specified by the error tolerances RTOL and ATOL.
 The simplest use is to take them both to be scalars.
 To obtain more flexibility, they can both be vectors.
 The code must be told your choice.

 **** Are both error tolerances RTOL, ATOL scalars ...
 YES -- set INFO(2) = 0
 and input scalars for both RTOL and ATOL
 NO -- set INFO(2) = 1
 and input arrays for both RTOL and ATOL ****

 INFO(3) -- The code integrates from T in the direction
 of TOUT by steps. If you wish, it will return the
 computed solution and derivative at the next
 intermediate step (the intermediate-output mode) or
 TOUT, whichever comes first. This is a good way to
 proceed if you want to see the behavior of the solution.
 If you must have solutions at a great many specific
 TOUT points, this code will compute them efficiently.

 **** Do you want the solution only at
 TOUT (and not at the next intermediate step) ...
 YES -- set INFO(3) = 0
 NO -- set INFO(3) = 1 ****

 INFO(4) -- To handle solutions at a great many specific
 values TOUT efficiently, this code may integrate past
 TOUT and interpolate to obtain the result at TOUT.
 Sometimes it is not possible to integrate beyond some
 point TSTOP because the equation changes there or it is
 not defined past TSTOP. Then you must tell the code
 not to go past.

 **** Can the integration be carried out without any
 Restrictions on the independent variable T ...
 YES -- set INFO(4)=0
 NO -- set INFO(4)=1
 and define the stopping point TSTOP by
 setting RWORK(1)=TSTOP ****

SLATEC3 (DACOSH through DS2Y) - 176

 RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
 error tolerances to tell the code how accurately you want
 the solution to be computed. They must be defined as
 program variables because the code may change them. You
 have two choices --
 Both RTOL and ATOL are scalars. (INFO(2)=0)
 Both RTOL and ATOL are vectors. (INFO(2)=1)
 In either case all components must be non-negative.

 The tolerances are used by the code in a local error test
 at each step which requires roughly that
 ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
 for each vector component.
 (More specifically, a Euclidean norm is used to measure
 the size of vectors, and the error test uses the magnitude
 of the solution at the beginning of the step.)

 The true (global) error is the difference between the true
 solution of the initial value problem and the computed
 approximation. Practically all present day codes,
 including this one, control the local error at each step
 and do not even attempt to control the global error
 directly. Roughly speaking, they produce a solution Y(T)
 which satisfies the differential equations with a
 residual R(T), DY(T)/DT = DF(T,Y(T)) + R(T) ,
 and, almost always, R(T) is bounded by the error
 tolerances. Usually, but not always, the true accuracy of
 the computed Y is comparable to the error tolerances. This
 code will usually, but not always, deliver a more accurate
 solution if you reduce the tolerances and integrate again.
 By comparing two such solutions you can get a fairly
 reliable idea of the true error in the solution at the
 bigger tolerances.

 Setting ATOL=0.D0 results in a pure relative error test on
 that component. Setting RTOL=0. results in a pure absolute
 error test on that component. A mixed test with non-zero
 RTOL and ATOL corresponds roughly to a relative error
 test when the solution component is much bigger than ATOL
 and to an absolute error test when the solution component
 is smaller than the threshold ATOL.

 Proper selection of the absolute error control parameters
 ATOL requires you to have some idea of the scale of the
 solution components. To acquire this information may mean
 that you will have to solve the problem more than once. In
 the absence of scale information, you should ask for some
 relative accuracy in all the components (by setting RTOL
 values non-zero) and perhaps impose extremely small
 absolute error tolerances to protect against the danger of
 a solution component becoming zero.

 The code will not attempt to compute a solution at an
 accuracy unreasonable for the machine being used. It will
 advise you if you ask for too much accuracy and inform
 you as to the maximum accuracy it believes possible.

 RWORK(*) -- Dimension this DOUBLE PRECISION work array of length
 LRW in your calling program.

SLATEC3 (DACOSH through DS2Y) - 177

 RWORK(1) -- If you have set INFO(4)=0, you can ignore this
 optional input parameter. Otherwise you must define a
 stopping point TSTOP by setting RWORK(1) = TSTOP.
 (for some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP.)

 LRW -- Set it to the declared length of the RWORK array.
 You must have LRW .GE. 130+21*NEQ

 IWORK(*) -- Dimension this INTEGER work array of length LIW in
 your calling program.

 LIW -- Set it to the declared length of the IWORK array.
 You must have LIW .GE. 51

 RPAR, IPAR -- These are parameter arrays, of DOUBLE PRECISION and
 INTEGER type, respectively. You can use them for
 communication between your program that calls DDEABM and
 the DF subroutine. They are not used or altered by
 DDEABM. If you do not need RPAR or IPAR, ignore these
 parameters by treating them as dummy arguments. If you do
 choose to use them, dimension them in your calling program
 and in DF as arrays of appropriate length.

 **
 * OUTPUT -- After Any Return From DDEABM *
 **

 The principal aim of the code is to return a computed solution at
 TOUT, although it is also possible to obtain intermediate results
 along the way. To find out whether the code achieved its goal
 or if the integration process was interrupted before the task was
 completed, you must check the IDID parameter.

 T -- The solution was successfully advanced to the
 output value of T.

 Y(*) -- Contains the computed solution approximation at T.
 You may also be interested in the approximate derivative
 of the solution at T. It is contained in
 RWORK(21),...,RWORK(20+NEQ).

 IDID -- Reports what the code did

 *** Task Completed ***
 Reported by positive values of IDID

 IDID = 1 -- A step was successfully taken in the
 intermediate-output mode. The code has not
 yet reached TOUT.

 IDID = 2 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping exactly to TOUT.

 IDID = 3 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping past TOUT.
 Y(*) is obtained by interpolation.

SLATEC3 (DACOSH through DS2Y) - 178

 *** Task Interrupted ***
 Reported by negative values of IDID

 IDID = -1 -- A large amount of work has been expended.
 (500 steps attempted)

 IDID = -2 -- The error tolerances are too stringent.

 IDID = -3 -- The local error test cannot be satisfied
 because you specified a zero component in ATOL
 and the corresponding computed solution
 component is zero. Thus, a pure relative error
 test is impossible for this component.

 IDID = -4 -- The problem appears to be stiff.

 IDID = -5,-6,-7,..,-32 -- Not applicable for this code
 but used by other members of DEPAC or possible
 future extensions.

 *** Task Terminated ***
 Reported by the value of IDID=-33

 IDID = -33 -- The code has encountered trouble from which
 it cannot recover. A message is printed
 explaining the trouble and control is returned
 to the calling program. For example, this occurs
 when invalid input is detected.

 RTOL, ATOL -- These quantities remain unchanged except when
 IDID = -2. In this case, the error tolerances have been
 increased by the code to values which are estimated to be
 appropriate for continuing the integration. However, the
 reported solution at T was obtained using the input values
 of RTOL and ATOL.

 RWORK, IWORK -- Contain information which is usually of no
 interest to the user but necessary for subsequent calls.
 However, you may find use for

 RWORK(11)--which contains the step size H to be
 attempted on the next step.

 RWORK(12)--if the tolerances have been increased by the
 code (IDID = -2) , they were multiplied by the
 value in RWORK(12).

 RWORK(13)--Which contains the current value of the
 independent variable, i.e. the farthest point
 integration has reached. This will be different
 from T only when interpolation has been
 performed (IDID=3).

 RWORK(20+I)--Which contains the approximate derivative
 of the solution component Y(I). In DDEABM, it
 is obtained by calling subroutine DF to
 evaluate the differential equation using T and
 Y(*) when IDID=1 or 2, and by interpolation
 when IDID=3.

SLATEC3 (DACOSH through DS2Y) - 179

 **
 * INPUT -- What To Do To Continue The Integration *
 * (calls after the first) *
 **

 This code is organized so that subsequent calls to continue the
 integration involve little (if any) additional effort on your
 part. You must monitor the IDID parameter in order to determine
 what to do next.

 Recalling that the principal task of the code is to integrate
 from T to TOUT (the interval mode), usually all you will need
 to do is specify a new TOUT upon reaching the current TOUT.

 Do not alter any quantity not specifically permitted below,
 in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
 the differential equation in subroutine DF. Any such alteration
 constitutes a new problem and must be treated as such, i.e.
 you must start afresh.

 You cannot change from vector to scalar error control or vice
 versa (INFO(2)) but you can change the size of the entries of
 RTOL, ATOL. Increasing a tolerance makes the equation easier
 to integrate. Decreasing a tolerance will make the equation
 harder to integrate and should generally be avoided.

 You can switch from the intermediate-output mode to the
 interval mode (INFO(3)) or vice versa at any time.

 If it has been necessary to prevent the integration from going
 past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
 code will not integrate to any TOUT beyond the currently
 specified TSTOP. Once TSTOP has been reached you must change
 the value of TSTOP or set INFO(4)=0. You may change INFO(4)
 or TSTOP at any time but you must supply the value of TSTOP in
 RWORK(1) whenever you set INFO(4)=1.

 The parameter INFO(1) is used by the code to indicate the
 beginning of a new problem and to indicate whether integration
 is to be continued. You must input the value INFO(1) = 0
 when starting a new problem. You must input the value
 INFO(1) = 1 if you wish to continue after an interrupted task.
 Do not set INFO(1) = 0 on a continuation call unless you
 want the code to restart at the current T.

 *** Following A Completed Task ***
 If
 IDID = 1, call the code again to continue the integration
 another step in the direction of TOUT.

 IDID = 2 or 3, define a new TOUT and call the code again.
 TOUT must be different from T. You cannot change
 the direction of integration without restarting.

 *** Following An Interrupted Task ***
 To show the code that you realize the task was
 interrupted and that you want to continue, you
 must take appropriate action and reset INFO(1) = 1
 If

SLATEC3 (DACOSH through DS2Y) - 180

 IDID = -1, the code has attempted 500 steps.
 If you want to continue, set INFO(1) = 1 and
 call the code again. An additional 500 steps
 will be allowed.

 IDID = -2, the error tolerances RTOL, ATOL have been
 increased to values the code estimates appropriate
 for continuing. You may want to change them
 yourself. If you are sure you want to continue
 with relaxed error tolerances, set INFO(1)=1 and
 call the code again.

 IDID = -3, a solution component is zero and you set the
 corresponding component of ATOL to zero. If you
 are sure you want to continue, you must first
 alter the error criterion to use positive values
 for those components of ATOL corresponding to zero
 solution components, then set INFO(1)=1 and call
 the code again.

 IDID = -4, the problem appears to be stiff. It is very
 inefficient to solve such problems with DDEABM.
 The code DDEBDF in DEPAC handles this task
 efficiently. If you are absolutely sure you want
 to continue with DDEABM, set INFO(1)=1 and call
 the code again.

 IDID = -5,-6,-7,..,-32 --- cannot occur with this code
 but used by other members of DEPAC or possible
 future extensions.

 *** Following A Terminated Task ***
 If
 IDID = -33, you cannot continue the solution of this
 problem. An attempt to do so will result in your
 run being terminated.

 **
 *Long Description:

 **
 * DEPAC Package Overview *
 **

 You have a choice of three differential equation solvers from
 DEPAC. The following brief descriptions are meant to aid you in
 choosing the most appropriate code for your problem.

 DDERKF is a fifth order Runge-Kutta code. It is the simplest of
 the three choices, both algorithmically and in the use of the
 code. DDERKF is primarily designed to solve non-stiff and
 mildly stiff differential equations when derivative evaluations
 are not expensive. It should generally not be used to get high
 accuracy results nor answers at a great many specific points.
 Because DDERKF has very low overhead costs, it will usually
 result in the least expensive integration when solving
 problems requiring a modest amount of accuracy and having
 equations that are not costly to evaluate. DDERKF attempts to
 discover when it is not suitable for the task posed.

SLATEC3 (DACOSH through DS2Y) - 181

 DDEABM is a variable order (one through twelve) Adams code.
 Its complexity lies somewhere between that of DDERKF and
 DDEBDF. DDEABM is primarily designed to solve non-stiff and
 mildly stiff differential equations when derivative evaluations
 are expensive, high accuracy results are needed or answers at
 many specific points are required. DDEABM attempts to discover
 when it is not suitable for the task posed.

 DDEBDF is a variable order (one through five) backward
 differentiation formula code. it is the most complicated of
 the three choices. DDEBDF is primarily designed to solve stiff
 differential equations at crude to moderate tolerances.
 If the problem is very stiff at all, DDERKF and DDEABM will be
 quite inefficient compared to DDEBDF. However, DDEBDF will be
 inefficient compared to DDERKF and DDEABM on non-stiff problems
 because it uses much more storage, has a much larger overhead,
 and the low order formulas will not give high accuracies
 efficiently.

 The concept of stiffness cannot be described in a few words.
 If you do not know the problem to be stiff, try either DDERKF
 or DDEABM. Both of these codes will inform you of stiffness
 when the cost of solving such problems becomes important.

 ***REFERENCES L. F. Shampine and H. A. Watts, DEPAC - design of a user
 oriented package of ODE solvers, Report SAND79-2374,
 Sandia Laboratories, 1979.
 ***ROUTINES CALLED DDES, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820301 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891024 Changed references from DVNORM to DHVNRM. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 182

DDEBDF

 SUBROUTINE DDEBDF (DF, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
 + RWORK, LRW, IWORK, LIW, RPAR, IPAR, DJAC)
 ***BEGIN PROLOGUE DDEBDF
 ***PURPOSE Solve an initial value problem in ordinary differential
 equations using backward differentiation formulas. It is
 intended primarily for stiff problems.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A2
 ***TYPE DOUBLE PRECISION (DEBDF-S, DDEBDF-D)
 ***KEYWORDS BACKWARD DIFFERENTIATION FORMULAS, DEPAC,
 INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, STIFF
 ***AUTHOR Shampine, L. F., (SNLA)
 Watts, H. A., (SNLA)
 ***DESCRIPTION

 This is the backward differentiation code in the package of
 differential equation solvers DEPAC, consisting of the codes
 DDERKF, DDEABM, and DDEBDF. Design of the package was by
 L. F. Shampine and H. A. Watts. It is documented in
 SAND-79-2374 , DEPAC - Design of a User Oriented Package of ODE
 Solvers.
 DDEBDF is a driver for a modification of the code LSODE written by
 A. C. Hindmarsh
 Lawrence Livermore Laboratory
 Livermore, California 94550

 **
 ** DEPAC PACKAGE OVERVIEW **
 **

 You have a choice of three differential equation solvers from
 DEPAC. The following brief descriptions are meant to aid you
 in choosing the most appropriate code for your problem.

 DDERKF is a fifth order Runge-Kutta code. It is the simplest of
 the three choices, both algorithmically and in the use of the
 code. DDERKF is primarily designed to solve non-stiff and mild-
 ly stiff differential equations when derivative evaluations are
 not expensive. It should generally not be used to get high
 accuracy results nor answers at a great many specific points.
 Because DDERKF has very low overhead costs, it will usually
 result in the least expensive integration when solving
 problems requiring a modest amount of accuracy and having
 equations that are not costly to evaluate. DDERKF attempts to
 discover when it is not suitable for the task posed.

 DDEABM is a variable order (one through twelve) Adams code. Its
 complexity lies somewhere between that of DDERKF and DDEBDF.
 DDEABM is primarily designed to solve non-stiff and mildly
 stiff differential equations when derivative evaluations are
 expensive, high accuracy results are needed or answers at
 many specific points are required. DDEABM attempts to discover
 when it is not suitable for the task posed.

 DDEBDF is a variable order (one through five) backward

SLATEC3 (DACOSH through DS2Y) - 183

 differentiation formula code. It is the most complicated of
 the three choices. DDEBDF is primarily designed to solve stiff
 differential equations at crude to moderate tolerances.
 If the problem is very stiff at all, DDERKF and DDEABM will be
 quite inefficient compared to DDEBDF. However, DDEBDF will be
 inefficient compared to DDERKF and DDEABM on non-stiff problems
 because it uses much more storage, has a much larger overhead,
 and the low order formulas will not give high accuracies
 efficiently.

 The concept of stiffness cannot be described in a few words.
 If you do not know the problem to be stiff, try either DDERKF
 or DDEABM. Both of these codes will inform you of stiffness
 when the cost of solving such problems becomes important.

 **
 ** ABSTRACT **
 **

 Subroutine DDEBDF uses the backward differentiation formulas of
 orders one through five to integrate a system of NEQ first order
 ordinary differential equations of the form
 DU/DX = DF(X,U)
 when the vector Y(*) of initial values for U(*) at X=T is given.
 The subroutine integrates from T to TOUT. It is easy to continue the
 integration to get results at additional TOUT. This is the interval
 mode of operation. It is also easy for the routine to return with
 the solution at each intermediate step on the way to TOUT. This is
 the intermediate-output mode of operation.

 **
 * Description of The Arguments To DDEBDF (An Overview) *
 **

 The Parameters are:

 DF -- This is the name of a subroutine which you provide to
 define the differential equations.

 NEQ -- This is the number of (first order) differential
 equations to be integrated.

 T -- This is a DOUBLE PRECISION value of the independent
 variable.

 Y(*) -- This DOUBLE PRECISION array contains the solution
 components at T.

 TOUT -- This is a DOUBLE PRECISION point at which a solution is
 desired.

 INFO(*) -- The basic task of the code is to integrate the
 differential equations from T to TOUT and return an
 answer at TOUT. INFO(*) is an INTEGER array which is used
 to communicate exactly how you want this task to be
 carried out.

 RTOL, ATOL -- These DOUBLE PRECISION quantities
 represent relative and absolute error tolerances which you
 provide to indicate how accurately you wish the solution

SLATEC3 (DACOSH through DS2Y) - 184

 to be computed. You may choose them to be both scalars
 or else both vectors.

 IDID -- This scalar quantity is an indicator reporting what
 the code did. You must monitor this INTEGER variable to
 decide what action to take next.

 RWORK(*), LRW -- RWORK(*) is a DOUBLE PRECISION work array of
 length LRW which provides the code with needed storage
 space.

 IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
 which provides the code with needed storage space and an
 across call flag.

 RPAR, IPAR -- These are DOUBLE PRECISION and INTEGER parameter
 arrays which you can use for communication between your
 calling program and the DF subroutine (and the DJAC
 subroutine).

 DJAC -- This is the name of a subroutine which you may choose to
 provide for defining the Jacobian matrix of partial
 derivatives DF/DU.

 Quantities which are used as input items are
 NEQ, T, Y(*), TOUT, INFO(*),
 RTOL, ATOL, RWORK(1), LRW,
 IWORK(1), IWORK(2), and LIW.

 Quantities which may be altered by the code are
 T, Y(*), INFO(1), RTOL, ATOL,
 IDID, RWORK(*) and IWORK(*).

 **
 * INPUT -- What To Do On The First Call To DDEBDF *
 **

 The first call of the code is defined to be the start of each new
 problem. Read through the descriptions of all the following items,
 provide sufficient storage space for designated arrays, set
 appropriate variables for the initialization of the problem, and
 give information about how you want the problem to be solved.

 DF -- Provide a subroutine of the form
 DF(X,U,UPRIME,RPAR,IPAR)
 to define the system of first order differential equations
 which is to be solved. For the given values of X and the
 vector U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
 evaluate the NEQ components of the system of differential
 equations DU/DX=DF(X,U) and store the derivatives in the
 array UPRIME(*), that is, UPRIME(I) = * DU(I)/DX * for
 equations I=1,...,NEQ.

 Subroutine DF must not alter X or U(*). You must declare
 the name DF in an external statement in your program that
 calls DDEBDF. You must dimension U and UPRIME in DF.

 RPAR and IPAR are DOUBLE PRECISION and INTEGER parameter
 arrays which you can use for communication between your

SLATEC3 (DACOSH through DS2Y) - 185

 calling program and subroutine DF. They are not used or
 altered by DDEBDF. If you do not need RPAR or IPAR,
 ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension them in
 your calling program and in DF as arrays of appropriate
 length.

 NEQ -- Set it to the number of differential equations.
 (NEQ .GE. 1)

 T -- Set it to the initial point of the integration.
 You must use a program variable for T because the code
 changes its value.

 Y(*) -- Set this vector to the initial values of the NEQ solution
 components at the initial point. You must dimension Y at
 least NEQ in your calling program.

 TOUT -- Set it to the first point at which a solution is desired.
 You can take TOUT = T, in which case the code
 will evaluate the derivative of the solution at T and
 return. Integration either forward in T (TOUT .GT. T)
 or backward in T (TOUT .LT. T) is permitted.

 The code advances the solution from T to TOUT using
 step sizes which are automatically selected so as to
 achieve the desired accuracy. If you wish, the code will
 return with the solution and its derivative following
 each intermediate step (intermediate-output mode) so that
 you can monitor them, but you still must provide TOUT in
 accord with the basic aim of the code.

 The first step taken by the code is a critical one
 because it must reflect how fast the solution changes near
 the initial point. The code automatically selects an
 initial step size which is practically always suitable for
 the problem. By using the fact that the code will not
 step past TOUT in the first step, you could, if necessary,
 restrict the length of the initial step size.

 For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP. When you have declared a TSTOP point (see INFO(4)
 and RWORK(1)), you have told the code not to integrate
 past TSTOP. In this case any TOUT beyond TSTOP is invalid
 input.

 INFO(*) -- Use the INFO array to give the code more details about
 how you want your problem solved. This array should be
 dimensioned of length 15 to accommodate other members of
 DEPAC or possible future extensions, though DDEBDF uses
 only the first six entries. You must respond to all of
 the following items which are arranged as questions. The
 simplest use of the code corresponds to answering all
 questions as YES ,i.e. setting all entries of INFO to 0.

 INFO(1) -- This parameter enables the code to initialize
 itself. You must set it to indicate the start of every
 new problem.

SLATEC3 (DACOSH through DS2Y) - 186

 **** Is this the first call for this problem ...
 YES -- Set INFO(1) = 0
 NO -- Not applicable here.
 See below for continuation calls. ****

 INFO(2) -- How much accuracy you want of your solution
 is specified by the error tolerances RTOL and ATOL.
 The simplest use is to take them both to be scalars.
 To obtain more flexibility, they can both be vectors.
 The code must be told your choice.

 **** Are both error tolerances RTOL, ATOL scalars ...
 YES -- Set INFO(2) = 0
 and input scalars for both RTOL and ATOL
 NO -- Set INFO(2) = 1
 and input arrays for both RTOL and ATOL ****

 INFO(3) -- The code integrates from T in the direction
 of TOUT by steps. If you wish, it will return the
 computed solution and derivative at the next
 intermediate step (the intermediate-output mode) or
 TOUT, whichever comes first. This is a good way to
 proceed if you want to see the behavior of the solution.
 If you must have solutions at a great many specific
 TOUT points, this code will compute them efficiently.

 **** Do you want the solution only at
 TOUT (and NOT at the next intermediate step) ...
 YES -- Set INFO(3) = 0
 NO -- Set INFO(3) = 1 ****

 INFO(4) -- To handle solutions at a great many specific
 values TOUT efficiently, this code may integrate past
 TOUT and interpolate to obtain the result at TOUT.
 Sometimes it is not possible to integrate beyond some
 point TSTOP because the equation changes there or it is
 not defined past TSTOP. Then you must tell the code
 not to go past.

 **** Can the integration be carried out without any
 restrictions on the independent variable T ...
 YES -- Set INFO(4)=0
 NO -- Set INFO(4)=1
 and define the stopping point TSTOP by
 setting RWORK(1)=TSTOP ****

 INFO(5) -- To solve stiff problems it is necessary to use the
 Jacobian matrix of partial derivatives of the system
 of differential equations. If you do not provide a
 subroutine to evaluate it analytically (see the
 description of the item DJAC in the call list), it will
 be approximated by numerical differencing in this code.
 Although it is less trouble for you to have the code
 compute partial derivatives by numerical differencing,
 the solution will be more reliable if you provide the
 derivatives via DJAC. Sometimes numerical differencing
 is cheaper than evaluating derivatives in DJAC and
 sometimes it is not - this depends on your problem.

SLATEC3 (DACOSH through DS2Y) - 187

 If your problem is linear, i.e. has the form
 DU/DX = DF(X,U) = J(X)*U + G(X) for some matrix J(X)
 and vector G(X), the Jacobian matrix DF/DU = J(X).
 Since you must provide a subroutine to evaluate DF(X,U)
 analytically, it is little extra trouble to provide
 subroutine DJAC for evaluating J(X) analytically.
 Furthermore, in such cases, numerical differencing is
 much more expensive than analytic evaluation.

 **** Do you want the code to evaluate the partial
 derivatives automatically by numerical differences ...
 YES -- Set INFO(5)=0
 NO -- Set INFO(5)=1
 and provide subroutine DJAC for evaluating the
 Jacobian matrix ****

 INFO(6) -- DDEBDF will perform much better if the Jacobian
 matrix is banded and the code is told this. In this
 case, the storage needed will be greatly reduced,
 numerical differencing will be performed more cheaply,
 and a number of important algorithms will execute much
 faster. The differential equation is said to have
 half-bandwidths ML (lower) and MU (upper) if equation I
 involves only unknowns Y(J) with
 I-ML .LE. J .LE. I+MU
 for all I=1,2,...,NEQ. Thus, ML and MU are the widths
 of the lower and upper parts of the band, respectively,
 with the main diagonal being excluded. If you do not
 indicate that the equation has a banded Jacobian,
 the code works with a full matrix of NEQ**2 elements
 (stored in the conventional way). Computations with
 banded matrices cost less time and storage than with
 full matrices if 2*ML+MU .LT. NEQ. If you tell the
 code that the Jacobian matrix has a banded structure and
 you want to provide subroutine DJAC to compute the
 partial derivatives, then you must be careful to store
 the elements of the Jacobian matrix in the special form
 indicated in the description of DJAC.

 **** Do you want to solve the problem using a full
 (dense) Jacobian matrix (and not a special banded
 structure) ...
 YES -- Set INFO(6)=0
 NO -- Set INFO(6)=1
 and provide the lower (ML) and upper (MU)
 bandwidths by setting
 IWORK(1)=ML
 IWORK(2)=MU ****

 RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
 error tolerances to tell the code how accurately you want
 the solution to be computed. They must be defined as
 program variables because the code may change them. You
 have two choices --
 Both RTOL and ATOL are scalars. (INFO(2)=0)
 Both RTOL and ATOL are vectors. (INFO(2)=1)
 In either case all components must be non-negative.

 The tolerances are used by the code in a local error test
 at each step which requires roughly that

SLATEC3 (DACOSH through DS2Y) - 188

 ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
 for each vector component.
 (More specifically, a root-mean-square norm is used to
 measure the size of vectors, and the error test uses the
 magnitude of the solution at the beginning of the step.)

 The true (global) error is the difference between the true
 solution of the initial value problem and the computed
 approximation. Practically all present day codes,
 including this one, control the local error at each step
 and do not even attempt to control the global error
 directly. Roughly speaking, they produce a solution Y(T)
 which satisfies the differential equations with a
 residual R(T), DY(T)/DT = DF(T,Y(T)) + R(T) ,
 and, almost always, R(T) is bounded by the error
 tolerances. Usually, but not always, the true accuracy of
 the computed Y is comparable to the error tolerances. This
 code will usually, but not always, deliver a more accurate
 solution if you reduce the tolerances and integrate again.
 By comparing two such solutions you can get a fairly
 reliable idea of the true error in the solution at the
 bigger tolerances.

 Setting ATOL=0. results in a pure relative error test on
 that component. Setting RTOL=0. results in a pure abso-
 lute error test on that component. A mixed test with non-
 zero RTOL and ATOL corresponds roughly to a relative error
 test when the solution component is much bigger than ATOL
 and to an absolute error test when the solution component
 is smaller than the threshold ATOL.

 Proper selection of the absolute error control parameters
 ATOL requires you to have some idea of the scale of the
 solution components. To acquire this information may mean
 that you will have to solve the problem more than once. In
 the absence of scale information, you should ask for some
 relative accuracy in all the components (by setting RTOL
 values non-zero) and perhaps impose extremely small
 absolute error tolerances to protect against the danger of
 a solution component becoming zero.

 The code will not attempt to compute a solution at an
 accuracy unreasonable for the machine being used. It will
 advise you if you ask for too much accuracy and inform
 you as to the maximum accuracy it believes possible.

 RWORK(*) -- Dimension this DOUBLE PRECISION work array of length
 LRW in your calling program.

 RWORK(1) -- If you have set INFO(4)=0, you can ignore this
 optional input parameter. Otherwise you must define a
 stopping point TSTOP by setting RWORK(1) = TSTOP.
 (For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP.)

 LRW -- Set it to the declared length of the RWORK array.
 You must have
 LRW .GE. 250+10*NEQ+NEQ**2

SLATEC3 (DACOSH through DS2Y) - 189

 for the full (dense) Jacobian case (when INFO(6)=0), or
 LRW .GE. 250+10*NEQ+(2*ML+MU+1)*NEQ
 for the banded Jacobian case (when INFO(6)=1).

 IWORK(*) -- Dimension this INTEGER work array of length LIW in
 your calling program.

 IWORK(1), IWORK(2) -- If you have set INFO(6)=0, you can ignore
 these optional input parameters. Otherwise you must define
 the half-bandwidths ML (lower) and MU (upper) of the
 Jacobian matrix by setting IWORK(1) = ML and
 IWORK(2) = MU. (The code will work with a full matrix
 of NEQ**2 elements unless it is told that the problem has
 a banded Jacobian, in which case the code will work with
 a matrix containing at most (2*ML+MU+1)*NEQ elements.)

 LIW -- Set it to the declared length of the IWORK array.
 You must have LIW .GE. 56+NEQ.

 RPAR, IPAR -- These are parameter arrays, of DOUBLE PRECISION and
 INTEGER type, respectively. You can use them for
 communication between your program that calls DDEBDF and
 the DF subroutine (and the DJAC subroutine). They are not
 used or altered by DDEBDF. If you do not need RPAR or
 IPAR, ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension them in
 your calling program and in DF (and in DJAC) as arrays of
 appropriate length.

 DJAC -- If you have set INFO(5)=0, you can ignore this parameter
 by treating it as a dummy argument. (For some compilers
 you may have to write a dummy subroutine named DJAC in
 order to avoid problems associated with missing external
 routine names.) Otherwise, you must provide a subroutine
 of the form
 DJAC(X,U,PD,NROWPD,RPAR,IPAR)
 to define the Jacobian matrix of partial derivatives DF/DU
 of the system of differential equations DU/DX = DF(X,U).
 For the given values of X and the vector
 U(*)=(U(1),U(2),...,U(NEQ)), the subroutine must evaluate
 the non-zero partial derivatives DF(I)/DU(J) for each
 differential equation I=1,...,NEQ and each solution
 component J=1,...,NEQ , and store these values in the
 matrix PD. The elements of PD are set to zero before each
 call to DJAC so only non-zero elements need to be defined.

 Subroutine DJAC must not alter X, U(*), or NROWPD. You
 must declare the name DJAC in an external statement in
 your program that calls DDEBDF. NROWPD is the row
 dimension of the PD matrix and is assigned by the code.
 Therefore you must dimension PD in DJAC according to
 DIMENSION PD(NROWPD,1)
 You must also dimension U in DJAC.

 The way you must store the elements into the PD matrix
 depends on the structure of the Jacobian which you
 indicated by INFO(6).
 *** INFO(6)=0 -- Full (Dense) Jacobian ***
 When you evaluate the (non-zero) partial derivative
 of equation I with respect to variable J, you must

SLATEC3 (DACOSH through DS2Y) - 190

 store it in PD according to
 PD(I,J) = * DF(I)/DU(J) *
 *** INFO(6)=1 -- Banded Jacobian with ML Lower and MU
 Upper Diagonal Bands (refer to INFO(6) description of
 ML and MU) ***
 When you evaluate the (non-zero) partial derivative
 of equation I with respect to variable J, you must
 store it in PD according to
 IROW = I - J + ML + MU + 1
 PD(IROW,J) = * DF(I)/DU(J) *

 RPAR and IPAR are DOUBLE PRECISION and INTEGER parameter
 arrays which you can use for communication between your
 calling program and your Jacobian subroutine DJAC. They
 are not altered by DDEBDF. If you do not need RPAR or
 IPAR, ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension them
 in your calling program and in DJAC as arrays of
 appropriate length.

 **
 * OUTPUT -- After any return from DDEBDF *
 **

 The principal aim of the code is to return a computed solution at
 TOUT, although it is also possible to obtain intermediate results
 along the way. To find out whether the code achieved its goal
 or if the integration process was interrupted before the task was
 completed, you must check the IDID parameter.

 T -- The solution was successfully advanced to the
 output value of T.

 Y(*) -- Contains the computed solution approximation at T.
 You may also be interested in the approximate derivative
 of the solution at T. It is contained in
 RWORK(21),...,RWORK(20+NEQ).

 IDID -- Reports what the code did

 *** Task Completed ***
 Reported by positive values of IDID

 IDID = 1 -- A step was successfully taken in the
 intermediate-output mode. The code has not
 yet reached TOUT.

 IDID = 2 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping exactly to TOUT.

 IDID = 3 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping past TOUT.
 Y(*) is obtained by interpolation.

 *** Task Interrupted ***
 Reported by negative values of IDID

 IDID = -1 -- A large amount of work has been expended.
 (500 steps attempted)

SLATEC3 (DACOSH through DS2Y) - 191

 IDID = -2 -- The error tolerances are too stringent.

 IDID = -3 -- The local error test cannot be satisfied
 because you specified a zero component in ATOL
 and the corresponding computed solution
 component is zero. Thus, a pure relative error
 test is impossible for this component.

 IDID = -4,-5 -- Not applicable for this code but used
 by other members of DEPAC.

 IDID = -6 -- DDEBDF had repeated convergence test failures
 on the last attempted step.

 IDID = -7 -- DDEBDF had repeated error test failures on
 the last attempted step.

 IDID = -8,..,-32 -- Not applicable for this code but
 used by other members of DEPAC or possible
 future extensions.

 *** Task Terminated ***
 Reported by the value of IDID=-33

 IDID = -33 -- The code has encountered trouble from which
 it cannot recover. A message is printed
 explaining the trouble and control is returned
 to the calling program. For example, this
 occurs when invalid input is detected.

 RTOL, ATOL -- These quantities remain unchanged except when
 IDID = -2. In this case, the error tolerances have been
 increased by the code to values which are estimated to be
 appropriate for continuing the integration. However, the
 reported solution at T was obtained using the input values
 of RTOL and ATOL.

 RWORK, IWORK -- Contain information which is usually of no
 interest to the user but necessary for subsequent calls.
 However, you may find use for

 RWORK(11)--which contains the step size H to be
 attempted on the next step.

 RWORK(12)--If the tolerances have been increased by the
 code (IDID = -2) , they were multiplied by the
 value in RWORK(12).

 RWORK(13)--which contains the current value of the
 independent variable, i.e. the farthest point
 integration has reached. This will be
 different from T only when interpolation has
 been performed (IDID=3).

 RWORK(20+I)--which contains the approximate derivative
 of the solution component Y(I). In DDEBDF, it
 is never obtained by calling subroutine DF to
 evaluate the differential equation using T and
 Y(*), except at the initial point of

SLATEC3 (DACOSH through DS2Y) - 192

 integration.

 **
 ** INPUT -- What To Do To Continue The Integration **
 ** (calls after the first) **
 **

 This code is organized so that subsequent calls to continue the
 integration involve little (if any) additional effort on your
 part. You must monitor the IDID parameter in order to determine
 what to do next.

 Recalling that the principal task of the code is to integrate
 from T to TOUT (the interval mode), usually all you will need
 to do is specify a new TOUT upon reaching the current TOUT.

 Do not alter any quantity not specifically permitted below,
 in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
 the differential equation in subroutine DF. Any such alteration
 constitutes a new problem and must be treated as such, i.e.
 you must start afresh.

 You cannot change from vector to scalar error control or vice
 versa (INFO(2)) but you can change the size of the entries of
 RTOL, ATOL. Increasing a tolerance makes the equation easier
 to integrate. Decreasing a tolerance will make the equation
 harder to integrate and should generally be avoided.

 You can switch from the intermediate-output mode to the
 interval mode (INFO(3)) or vice versa at any time.

 If it has been necessary to prevent the integration from going
 past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
 code will not integrate to any TOUT beyond the currently
 specified TSTOP. Once TSTOP has been reached you must change
 the value of TSTOP or set INFO(4)=0. You may change INFO(4)
 or TSTOP at any time but you must supply the value of TSTOP in
 RWORK(1) whenever you set INFO(4)=1.

 Do not change INFO(5), INFO(6), IWORK(1), or IWORK(2)
 unless you are going to restart the code.

 The parameter INFO(1) is used by the code to indicate the
 beginning of a new problem and to indicate whether integration
 is to be continued. You must input the value INFO(1) = 0
 when starting a new problem. You must input the value
 INFO(1) = 1 if you wish to continue after an interrupted task.
 Do not set INFO(1) = 0 on a continuation call unless you
 want the code to restart at the current T.

 *** Following a Completed Task ***
 If
 IDID = 1, call the code again to continue the integration
 another step in the direction of TOUT.

 IDID = 2 or 3, define a new TOUT and call the code again.
 TOUT must be different from T. You cannot change
 the direction of integration without restarting.

 *** Following an Interrupted Task ***

SLATEC3 (DACOSH through DS2Y) - 193

 To show the code that you realize the task was
 interrupted and that you want to continue, you
 must take appropriate action and reset INFO(1) = 1
 If
 IDID = -1, the code has attempted 500 steps.
 If you want to continue, set INFO(1) = 1 and
 call the code again. An additional 500 steps
 will be allowed.

 IDID = -2, the error tolerances RTOL, ATOL have been
 increased to values the code estimates appropriate
 for continuing. You may want to change them
 yourself. If you are sure you want to continue
 with relaxed error tolerances, set INFO(1)=1 and
 call the code again.

 IDID = -3, a solution component is zero and you set the
 corresponding component of ATOL to zero. If you
 are sure you want to continue, you must first
 alter the error criterion to use positive values
 for those components of ATOL corresponding to zero
 solution components, then set INFO(1)=1 and call
 the code again.

 IDID = -4,-5 --- cannot occur with this code but used
 by other members of DEPAC.

 IDID = -6, repeated convergence test failures occurred
 on the last attempted step in DDEBDF. An inaccu-
 rate Jacobian may be the problem. If you are
 absolutely certain you want to continue, restart
 the integration at the current T by setting
 INFO(1)=0 and call the code again.

 IDID = -7, repeated error test failures occurred on the
 last attempted step in DDEBDF. A singularity in
 the solution may be present. You should re-
 examine the problem being solved. If you are
 absolutely certain you want to continue, restart
 the integration at the current T by setting
 INFO(1)=0 and call the code again.

 IDID = -8,..,-32 --- cannot occur with this code but
 used by other members of DDEPAC or possible future
 extensions.

 *** Following a Terminated Task ***
 If
 IDID = -33, you cannot continue the solution of this
 problem. An attempt to do so will result in your
 run being terminated.

 **

 ***** Warning *****

 If DDEBDF is to be used in an overlay situation, you must save and
 restore certain items used internally by DDEBDF (values in the
 common block DDEBD1). This can be accomplished as follows.

SLATEC3 (DACOSH through DS2Y) - 194

 To save the necessary values upon return from DDEBDF, simply call
 DSVCO(RWORK(22+NEQ),IWORK(21+NEQ)).

 To restore the necessary values before the next call to DDEBDF,
 simply call DRSCO(RWORK(22+NEQ),IWORK(21+NEQ)).

 ***REFERENCES L. F. Shampine and H. A. Watts, DEPAC - design of a user
 oriented package of ODE solvers, Report SAND79-2374,
 Sandia Laboratories, 1979.
 ***ROUTINES CALLED DLSOD, XERMSG
 ***COMMON BLOCKS DDEBD1
 ***REVISION HISTORY (YYMMDD)
 820301 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891024 Changed references from DVNORM to DHVNRM. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Convert XERRWV calls to XERMSG calls, make Prologue comments
 consistent with DEBDF. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 195

DDERKF

 SUBROUTINE DDERKF (DF, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
 + RWORK, LRW, IWORK, LIW, RPAR, IPAR)
 ***BEGIN PROLOGUE DDERKF
 ***PURPOSE Solve an initial value problem in ordinary differential
 equations using a Runge-Kutta-Fehlberg scheme.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A1A
 ***TYPE DOUBLE PRECISION (DERKF-S, DDERKF-D)
 ***KEYWORDS DEPAC, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, RKF,
 RUNGE-KUTTA-FEHLBERG METHODS
 ***AUTHOR Watts, H. A., (SNLA)
 Shampine, L. F., (SNLA)
 ***DESCRIPTION

 This is the Runge-Kutta code in the package of differential equation
 solvers DEPAC, consisting of the codes DDERKF, DDEABM, and DDEBDF.
 Design of the package was by L. F. Shampine and H. A. Watts.
 It is documented in
 SAND-79-2374 , DEPAC - Design of a User Oriented Package of ODE
 Solvers.
 DDERKF is a driver for a modification of the code RKF45 written by
 H. A. Watts and L. F. Shampine
 Sandia Laboratories
 Albuquerque, New Mexico 87185

 **
 ** DDEPAC PACKAGE OVERVIEW **
 **

 You have a choice of three differential equation solvers from
 DDEPAC. The following brief descriptions are meant to aid you
 in choosing the most appropriate code for your problem.

 DDERKF is a fifth order Runge-Kutta code. It is the simplest of
 the three choices, both algorithmically and in the use of the
 code. DDERKF is primarily designed to solve non-stiff and mild-
 ly stiff differential equations when derivative evaluations are
 not expensive. It should generally not be used to get high
 accuracy results nor answers at a great many specific points.
 Because DDERKF has very low overhead costs, it will usually
 result in the least expensive integration when solving
 problems requiring a modest amount of accuracy and having
 equations that are not costly to evaluate. DDERKF attempts to
 discover when it is not suitable for the task posed.

 DDEABM is a variable order (one through twelve) Adams code. Its
 complexity lies somewhere between that of DDERKF and DDEBDF.
 DDEABM is primarily designed to solve non-stiff and mildly
 stiff differential equations when derivative evaluations are
 expensive, high accuracy results are needed or answers at
 many specific points are required. DDEABM attempts to discover
 when it is not suitable for the task posed.

 DDEBDF is a variable order (one through five) backward
 differentiation formula code. It is the most complicated of

SLATEC3 (DACOSH through DS2Y) - 196

 the three choices. DDEBDF is primarily designed to solve stiff
 differential equations at crude to moderate tolerances.
 If the problem is very stiff at all, DDERKF and DDEABM will be
 quite inefficient compared to DDEBDF. However, DDEBDF will be
 inefficient compared to DDERKF and DDEABM on non-stiff problems
 because it uses much more storage, has a much larger overhead,
 and the low order formulas will not give high accuracies
 efficiently.

 The concept of stiffness cannot be described in a few words.
 If you do not know the problem to be stiff, try either DDERKF
 or DDEABM. Both of these codes will inform you of stiffness
 when the cost of solving such problems becomes important.

 **
 ** ABSTRACT **
 **

 Subroutine DDERKF uses a Runge-Kutta-Fehlberg (4,5) method to
 integrate a system of NEQ first order ordinary differential
 equations of the form
 DU/DX = DF(X,U)
 when the vector Y(*) of initial values for U(*) at X=T is given.
 The subroutine integrates from T to TOUT. It is easy to continue the
 integration to get results at additional TOUT. This is the interval
 mode of operation. It is also easy for the routine to return with
 the solution at each intermediate step on the way to TOUT. This is
 the intermediate-output mode of operation.

 DDERKF uses subprograms DRKFS, DFEHL, DHSTRT, DHVNRM, D1MACH, and
 the error handling routine XERMSG. The only machine dependent
 parameters to be assigned appear in D1MACH.

 **
 ** DESCRIPTION OF THE ARGUMENTS TO DDERKF (AN OVERVIEW) **
 **

 The Parameters are:

 DF -- This is the name of a subroutine which you provide to
 define the differential equations.

 NEQ -- This is the number of (first order) differential
 equations to be integrated.

 T -- This is a DOUBLE PRECISION value of the independent
 variable.

 Y(*) -- This DOUBLE PRECISION array contains the solution
 components at T.

 TOUT -- This is a DOUBLE PRECISION point at which a solution is
 desired.

 INFO(*) -- The basic task of the code is to integrate the
 differential equations from T to TOUT and return an
 answer at TOUT. INFO(*) is an INTEGER array which is used
 to communicate exactly how you want this task to be
 carried out.

SLATEC3 (DACOSH through DS2Y) - 197

 RTOL, ATOL -- These DOUBLE PRECISION quantities represent
 relative and absolute error tolerances which you provide
 to indicate how accurately you wish the solution to be
 computed. You may choose them to be both scalars or else
 both vectors.

 IDID -- This scalar quantity is an indicator reporting what
 the code did. You must monitor this INTEGER variable to
 decide what action to take next.

 RWORK(*), LRW -- RWORK(*) is a DOUBLE PRECISION work array of
 length LRW which provides the code with needed storage
 space.

 IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
 which provides the code with needed storage space and an
 across call flag.

 RPAR, IPAR -- These are DOUBLE PRECISION and INTEGER parameter
 arrays which you can use for communication between your
 calling program and the DF subroutine.

 Quantities which are used as input items are
 NEQ, T, Y(*), TOUT, INFO(*),
 RTOL, ATOL, LRW and LIW.

 Quantities which may be altered by the code are
 T, Y(*), INFO(1), RTOL, ATOL,
 IDID, RWORK(*) and IWORK(*).

 **
 ** INPUT -- What to do On The First Call To DDERKF **
 **

 The first call of the code is defined to be the start of each new
 problem. Read through the descriptions of all the following items,
 provide sufficient storage space for designated arrays, set
 appropriate variables for the initialization of the problem, and
 give information about how you want the problem to be solved.

 DF -- Provide a subroutine of the form
 DF(X,U,UPRIME,RPAR,IPAR)
 to define the system of first order differential equations
 which is to be solved. For the given values of X and the
 vector U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
 evaluate the NEQ components of the system of differential
 equations DU/DX=DF(X,U) and store the derivatives in the
 array UPRIME(*), that is, UPRIME(I) = * DU(I)/DX * for
 equations I=1,...,NEQ.

 Subroutine DF must not alter X or U(*). You must declare
 the name DF in an external statement in your program that
 calls DDERKF. You must dimension U and UPRIME in DF.

 RPAR and IPAR are DOUBLE PRECISION and INTEGER parameter
 arrays which you can use for communication between your
 calling program and subroutine DF. They are not used or
 altered by DDERKF. If you do not need RPAR or IPAR,
 ignore these parameters by treating them as dummy

SLATEC3 (DACOSH through DS2Y) - 198

 arguments. If you do choose to use them, dimension them in
 your calling program and in DF as arrays of appropriate
 length.

 NEQ -- Set it to the number of differential equations.
 (NEQ .GE. 1)

 T -- Set it to the initial point of the integration.
 You must use a program variable for T because the code
 changes its value.

 Y(*) -- Set this vector to the initial values of the NEQ solution
 components at the initial point. You must dimension Y at
 least NEQ in your calling program.

 TOUT -- Set it to the first point at which a solution
 is desired. You can take TOUT = T, in which case the code
 will evaluate the derivative of the solution at T and
 return. Integration either forward in T (TOUT .GT. T) or
 backward in T (TOUT .LT. T) is permitted.

 The code advances the solution from T to TOUT using
 step sizes which are automatically selected so as to
 achieve the desired accuracy. If you wish, the code will
 return with the solution and its derivative following
 each intermediate step (intermediate-output mode) so that
 you can monitor them, but you still must provide TOUT in
 accord with the basic aim of the code.

 The first step taken by the code is a critical one
 because it must reflect how fast the solution changes near
 the initial point. The code automatically selects an
 initial step size which is practically always suitable for
 the problem. By using the fact that the code will not
 step past TOUT in the first step, you could, if necessary,
 restrict the length of the initial step size.

 For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP. Since DDERKF will never step past a TOUT point,
 you need only make sure that no TOUT lies beyond TSTOP.

 INFO(*) -- Use the INFO array to give the code more details about
 how you want your problem solved. This array should be
 dimensioned of length 15 to accommodate other members of
 DEPAC or possible future extensions, though DDERKF uses
 only the first three entries. You must respond to all of
 the following items which are arranged as questions. The
 simplest use of the code corresponds to answering all
 questions as YES ,i.e. setting all entries of INFO to 0.

 INFO(1) -- This parameter enables the code to initialize
 itself. You must set it to indicate the start of every
 new problem.

 **** Is this the first call for this problem ...
 YES -- Set INFO(1) = 0
 NO -- Not applicable here.
 See below for continuation calls. ****

SLATEC3 (DACOSH through DS2Y) - 199

 INFO(2) -- How much accuracy you want of your solution
 is specified by the error tolerances RTOL and ATOL.
 The simplest use is to take them both to be scalars.
 To obtain more flexibility, they can both be vectors.
 The code must be told your choice.

 **** Are both error tolerances RTOL, ATOL scalars ...
 YES -- Set INFO(2) = 0
 and input scalars for both RTOL and ATOL
 NO -- Set INFO(2) = 1
 and input arrays for both RTOL and ATOL ****

 INFO(3) -- The code integrates from T in the direction
 of TOUT by steps. If you wish, it will return the
 computed solution and derivative at the next
 intermediate step (the intermediate-output mode).
 This is a good way to proceed if you want to see the
 behavior of the solution. If you must have solutions at
 a great many specific TOUT points, this code is
 INEFFICIENT. The code DDEABM in DEPAC handles this task
 more efficiently.

 **** Do you want the solution only at
 TOUT (and not at the next intermediate step) ...
 YES -- Set INFO(3) = 0
 NO -- Set INFO(3) = 1 ****

 RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
 error tolerances to tell the code how accurately you want
 the solution to be computed. They must be defined as
 program variables because the code may change them. You
 have two choices --
 Both RTOL and ATOL are scalars. (INFO(2)=0)
 Both RTOL and ATOL are vectors. (INFO(2)=1)
 In either case all components must be non-negative.

 The tolerances are used by the code in a local error test
 at each step which requires roughly that
 ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
 for each vector component.
 (More specifically, a maximum norm is used to measure
 the size of vectors, and the error test uses the average
 of the magnitude of the solution at the beginning and end
 of the step.)

 The true (global) error is the difference between the true
 solution of the initial value problem and the computed
 approximation. Practically all present day codes,
 including this one, control the local error at each step
 and do not even attempt to control the global error
 directly. Roughly speaking, they produce a solution Y(T)
 which satisfies the differential equations with a
 residual R(T), DY(T)/DT = DF(T,Y(T)) + R(T) ,
 and, almost always, R(T) is bounded by the error
 tolerances. Usually, but not always, the true accuracy of
 the computed Y is comparable to the error tolerances. This
 code will usually, but not always, deliver a more accurate
 solution if you reduce the tolerances and integrate again.
 By comparing two such solutions you can get a fairly

SLATEC3 (DACOSH through DS2Y) - 200

 reliable idea of the true error in the solution at the
 bigger tolerances.

 Setting ATOL=0. results in a pure relative error test on
 that component. Setting RTOL=0. yields a pure absolute
 error test on that component. A mixed test with non-zero
 RTOL and ATOL corresponds roughly to a relative error
 test when the solution component is much bigger than ATOL
 and to an absolute error test when the solution component
 is smaller than the threshold ATOL.

 Proper selection of the absolute error control parameters
 ATOL requires you to have some idea of the scale of the
 solution components. To acquire this information may mean
 that you will have to solve the problem more than once. In
 the absence of scale information, you should ask for some
 relative accuracy in all the components (by setting RTOL
 values non-zero) and perhaps impose extremely small
 absolute error tolerances to protect against the danger of
 a solution component becoming zero.

 The code will not attempt to compute a solution at an
 accuracy unreasonable for the machine being used. It will
 advise you if you ask for too much accuracy and inform
 you as to the maximum accuracy it believes possible.
 If you want relative accuracies smaller than about
 10**(-8), you should not ordinarily use DDERKF. The code
 DDEABM in DEPAC obtains stringent accuracies more
 efficiently.

 RWORK(*) -- Dimension this DOUBLE PRECISION work array of length
 LRW in your calling program.

 LRW -- Set it to the declared length of the RWORK array.
 You must have LRW .GE. 33+7*NEQ

 IWORK(*) -- Dimension this INTEGER work array of length LIW in
 your calling program.

 LIW -- Set it to the declared length of the IWORK array.
 You must have LIW .GE. 34

 RPAR, IPAR -- These are parameter arrays, of DOUBLE PRECISION and
 INTEGER type, respectively. You can use them for
 communication between your program that calls DDERKF and
 the DF subroutine. They are not used or altered by
 DDERKF. If you do not need RPAR or IPAR, ignore these
 parameters by treating them as dummy arguments. If you do
 choose to use them, dimension them in your calling program
 and in DF as arrays of appropriate length.

 **
 ** OUTPUT -- After any return from DDERKF **
 **

 The principal aim of the code is to return a computed solution at
 TOUT, although it is also possible to obtain intermediate results
 along the way. To find out whether the code achieved its goal
 or if the integration process was interrupted before the task was
 completed, you must check the IDID parameter.

SLATEC3 (DACOSH through DS2Y) - 201

 T -- The solution was successfully advanced to the
 output value of T.

 Y(*) -- Contains the computed solution approximation at T.
 You may also be interested in the approximate derivative
 of the solution at T. It is contained in
 RWORK(21),...,RWORK(20+NEQ).

 IDID -- Reports what the code did

 *** Task Completed ***
 Reported by positive values of IDID

 IDID = 1 -- A step was successfully taken in the
 intermediate-output mode. The code has not
 yet reached TOUT.

 IDID = 2 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping exactly to TOUT.

 *** Task Interrupted ***
 Reported by negative values of IDID

 IDID = -1 -- A large amount of work has been expended.
 (500 steps attempted)

 IDID = -2 -- The error tolerances are too stringent.

 IDID = -3 -- The local error test cannot be satisfied
 because you specified a zero component in ATOL
 and the corresponding computed solution
 component is zero. Thus, a pure relative error
 test is impossible for this component.

 IDID = -4 -- The problem appears to be stiff.

 IDID = -5 -- DDERKF is being used very inefficiently
 because the natural step size is being
 restricted by too frequent output.

 IDID = -6,-7,..,-32 -- Not applicable for this code but
 used by other members of DEPAC or possible
 future extensions.

 *** Task Terminated ***
 Reported by the value of IDID=-33

 IDID = -33 -- The code has encountered trouble from which
 it cannot recover. A message is printed
 explaining the trouble and control is returned
 to the calling program. For example, this
 occurs when invalid input is detected.

 RTOL, ATOL -- These quantities remain unchanged except when
 IDID = -2. In this case, the error tolerances have been
 increased by the code to values which are estimated to be
 appropriate for continuing the integration. However, the
 reported solution at T was obtained using the input values

SLATEC3 (DACOSH through DS2Y) - 202

 of RTOL and ATOL.

 RWORK, IWORK -- Contain information which is usually of no
 interest to the user but necessary for subsequent calls.
 However, you may find use for

 RWORK(11)--which contains the step size H to be
 attempted on the next step.

 RWORK(12)--If the tolerances have been increased by the
 code (IDID = -2) , they were multiplied by the
 value in RWORK(12).

 RWORK(20+I)--which contains the approximate derivative
 of the solution component Y(I). In DDERKF, it
 is always obtained by calling subroutine DF to
 evaluate the differential equation using T and
 Y(*).

 **
 ** INPUT -- What To Do To Continue The Integration **
 ** (calls after the first) **
 **

 This code is organized so that subsequent calls to continue the
 integration involve little (if any) additional effort on your
 part. You must monitor the IDID parameter to determine
 what to do next.

 Recalling that the principal task of the code is to integrate
 from T to TOUT (the interval mode), usually all you will need
 to do is specify a new TOUT upon reaching the current TOUT.

 Do not alter any quantity not specifically permitted below,
 in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
 the differential equation in subroutine DF. Any such alteration
 constitutes a new problem and must be treated as such, i.e.
 you must start afresh.

 You cannot change from vector to scalar error control or vice
 versa (INFO(2)) but you can change the size of the entries of
 RTOL, ATOL. Increasing a tolerance makes the equation easier
 to integrate. Decreasing a tolerance will make the equation
 harder to integrate and should generally be avoided.

 You can switch from the intermediate-output mode to the
 interval mode (INFO(3)) or vice versa at any time.

 The parameter INFO(1) is used by the code to indicate the
 beginning of a new problem and to indicate whether integration
 is to be continued. You must input the value INFO(1) = 0
 when starting a new problem. You must input the value
 INFO(1) = 1 if you wish to continue after an interrupted task.
 Do not set INFO(1) = 0 on a continuation call unless you
 want the code to restart at the current T.

 *** Following a Completed Task ***
 If
 IDID = 1, call the code again to continue the integration
 another step in the direction of TOUT.

SLATEC3 (DACOSH through DS2Y) - 203

 IDID = 2, define a new TOUT and call the code again.
 TOUT must be different from T. You cannot change
 the direction of integration without restarting.

 *** Following an Interrupted Task ***
 To show the code that you realize the task was
 interrupted and that you want to continue, you
 must take appropriate action and reset INFO(1) = 1
 If
 IDID = -1, the code has attempted 500 steps.
 If you want to continue, set INFO(1) = 1 and
 call the code again. An additional 500 steps
 will be allowed.

 IDID = -2, the error tolerances RTOL, ATOL have been
 increased to values the code estimates appropriate
 for continuing. You may want to change them
 yourself. If you are sure you want to continue
 with relaxed error tolerances, set INFO(1)=1 and
 call the code again.

 IDID = -3, a solution component is zero and you set the
 corresponding component of ATOL to zero. If you
 are sure you want to continue, you must first
 alter the error criterion to use positive values
 for those components of ATOL corresponding to zero
 solution components, then set INFO(1)=1 and call
 the code again.

 IDID = -4, the problem appears to be stiff. It is very
 inefficient to solve such problems with DDERKF.
 The code DDEBDF in DEPAC handles this task
 efficiently. If you are absolutely sure you want
 to continue with DDERKF, set INFO(1)=1 and call
 the code again.

 IDID = -5, you are using DDERKF very inefficiently by
 choosing output points TOUT so close together that
 the step size is repeatedly forced to be rather
 smaller than necessary. If you are willing to
 accept solutions at the steps chosen by the code,
 a good way to proceed is to use the intermediate
 output mode (setting INFO(3)=1). If you must have
 solutions at so many specific TOUT points, the
 code DDEABM in DEPAC handles this task
 efficiently. If you want to continue with DDERKF,
 set INFO(1)=1 and call the code again.

 IDID = -6,-7,..,-32 --- cannot occur with this code but
 used by other members of DEPAC or possible future
 extensions.

 *** Following a Terminated Task ***
 If
 IDID = -33, you cannot continue the solution of this
 problem. An attempt to do so will result in your
 run being terminated.

 **

SLATEC3 (DACOSH through DS2Y) - 204

 *Long Description:

 **
 ** DEPAC Package Overview **
 **

 You have a choice of three differential equation solvers from
 DEPAC. The following brief descriptions are meant to aid you in
 choosing the most appropriate code for your problem.

 DDERKF is a fifth order Runge-Kutta code. It is the simplest of
 the three choices, both algorithmically and in the use of the
 code. DDERKF is primarily designed to solve non-stiff and
 mildly stiff differential equations when derivative evaluations
 are not expensive. It should generally not be used to get high
 accuracy results nor answers at a great many specific points.
 Because DDERKF has very low overhead costs, it will usually
 result in the least expensive integration when solving
 problems requiring a modest amount of accuracy and having
 equations that are not costly to evaluate. DDERKF attempts to
 discover when it is not suitable for the task posed.

 DDEABM is a variable order (one through twelve) Adams code.
 Its complexity lies somewhere between that of DDERKF and
 DDEBDF. DDEABM is primarily designed to solve non-stiff and
 mildly stiff differential equations when derivative evaluations
 are expensive, high accuracy results are needed or answers at
 many specific points are required. DDEABM attempts to discover
 when it is not suitable for the task posed.

 DDEBDF is a variable order (one through five) backward
 differentiation formula code. it is the most complicated of
 the three choices. DDEBDF is primarily designed to solve stiff
 differential equations at crude to moderate tolerances.
 If the problem is very stiff at all, DDERKF and DDEABM will be
 quite inefficient compared to DDEBDF. However, DDEBDF will be
 inefficient compared to DDERKF and DDEABM on non-stiff problems
 because it uses much more storage, has a much larger overhead,
 and the low order formulas will not give high accuracies
 efficiently.

 The concept of stiffness cannot be described in a few words.
 If you do not know the problem to be stiff, try either DDERKF
 or DDEABM. Both of these codes will inform you of stiffness
 when the cost of solving such problems becomes important.

 ***REFERENCES L. F. Shampine and H. A. Watts, DEPAC - design of a user
 oriented package of ODE solvers, Report SAND79-2374,
 Sandia Laboratories, 1979.
 L. F. Shampine and H. A. Watts, Practical solution of
 ordinary differential equations by Runge-Kutta
 methods, Report SAND76-0585, Sandia Laboratories,
 1976.
 ***ROUTINES CALLED DRKFS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820301 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891024 Changed references from DVNORM to DHVNRM. (WRB)

SLATEC3 (DACOSH through DS2Y) - 205

 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls, make Prologue comments
 consistent with DERKF. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 206

DDOT

 DOUBLE PRECISION FUNCTION DDOT (N, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE DDOT
 ***PURPOSE Compute the inner product of two vectors.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A4
 ***TYPE DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C)
 ***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DX double precision vector with N elements
 INCX storage spacing between elements of DX
 DY double precision vector with N elements
 INCY storage spacing between elements of DY

 --Output--
 DDOT double precision dot product (zero if N .LE. 0)

 Returns the dot product of double precision DX and DY.
 DDOT = sum for I = 0 to N-1 of DX(LX+I*INCX) * DY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 207

DDRIV1

 SUBROUTINE DDRIV1 (N, T, Y, F, TOUT, MSTATE, EPS, LENW,
 8 IERFLG)
 ***BEGIN PROLOGUE DDRIV1
 ***PURPOSE The function of DDRIV1 is to solve N (200 or fewer)
 ordinary differential equations of the form
 dY(I)/dT = F(Y(I),T), given the initial conditions
 Y(I) = YI. DDRIV1 uses double precision arithmetic.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE DOUBLE PRECISION (SDRIV1-S, DDRIV1-D, CDRIV1-C)
 ***KEYWORDS DOUBLE PRECISION, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
 ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 Version 92.1

 I. CHOOSING THE CORRECT ROUTINE

 SDRIV
 DDRIV
 CDRIV
 These are the generic names for three packages for solving
 initial value problems for ordinary differential equations.
 SDRIV uses single precision arithmetic. DDRIV uses double
 precision arithmetic. CDRIV allows complex-valued
 differential equations, integrated with respect to a single,
 real, independent variable.

 As an aid in selecting the proper program, the following is a
 discussion of the important options or restrictions associated with
 each program:

 A. DDRIV1 should be tried first for those routine problems with
 no more than 200 differential equations (DDRIV2 and DDRIV3
 have no such restriction.) Internally this routine has two
 important technical defaults:
 1. Numerical approximation of the Jacobian matrix of the
 right hand side is used.
 2. The stiff solver option is used.
 Most users of DDRIV1 should not have to concern themselves
 with these details.

 B. DDRIV2 should be considered for those problems for which
 DDRIV1 is inadequate. For example, DDRIV1 may have difficulty
 with problems having zero initial conditions and zero
 derivatives. In this case DDRIV2, with an appropriate value
 of the parameter EWT, should perform more efficiently. DDRIV2
 provides three important additional options:
 1. The nonstiff equation solver (as well as the stiff

SLATEC3 (DACOSH through DS2Y) - 208

 solver) is available.
 2. The root-finding option is available.
 3. The program can dynamically select either the non-stiff
 or the stiff methods.
 Internally this routine also defaults to the numerical
 approximation of the Jacobian matrix of the right hand side.

 C. DDRIV3 is the most flexible, and hence the most complex, of
 the programs. Its important additional features include:
 1. The ability to exploit band structure in the Jacobian
 matrix.
 2. The ability to solve some implicit differential
 equations, i.e., those having the form:
 A(Y,T)*dY/dT = F(Y,T).
 3. The option of integrating in the one step mode.
 4. The option of allowing the user to provide a routine
 which computes the analytic Jacobian matrix of the right
 hand side.
 5. The option of allowing the user to provide a routine
 which does all the matrix algebra associated with
 corrections to the solution components.

 II. PARAMETERS ..

 (REMEMBER--To run DDRIV1 correctly in double precision, ALL
 non-integer arguments in the call sequence, including
 arrays, MUST be declared double precision.)

 The user should use parameter names in the call sequence of DDRIV1
 for those quantities whose value may be altered by DDRIV1. The
 parameters in the call sequence are:

 N = (Input) The number of differential equations, N .LE. 200

 T = The independent variable. On input for the first call, T
 is the initial point. On output, T is the point at which
 the solution is given.

 Y = The vector of dependent variables. Y is used as input on
 the first call, to set the initial values. On output, Y
 is the computed solution vector. This array Y is passed
 in the call sequence of the user-provided routine F. Thus
 parameters required by F can be stored in this array in
 components N+1 and above. (Note: Changes by the user to
 the first N components of this array will take effect only
 after a restart, i.e., after setting MSTATE to +1(-1).)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 DOUBLE PRECISION Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...
 .
 .
 YDOT(N) = ...
 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the

SLATEC3 (DACOSH through DS2Y) - 209

 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the
 user's declaration in the program which calls DDRIV1.
 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to DDRIV1. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls DDRIV1, he should set N to zero.
 DDRIV1 will signal this by returning a value of MSTATE
 equal to +5(-5). Altering the value of N in F has no
 effect on the value of N in the call sequence of DDRIV1.

 TOUT = (Input) The point at which the solution is desired.

 MSTATE = An integer describing the status of integration. The user
 must initialize MSTATE to +1 or -1. If MSTATE is
 positive, the routine will integrate past TOUT and
 interpolate the solution. This is the most efficient
 mode. If MSTATE is negative, the routine will adjust its
 internal step to reach TOUT exactly (useful if a
 singularity exists beyond TOUT.) The meaning of the
 magnitude of MSTATE:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of MSTATE should be tested by the
 user. Unless DDRIV1 is to be reinitialized, only the
 sign of MSTATE may be changed by the user. (As a
 convenience to the user who may wish to put out the
 initial conditions, DDRIV1 can be called with
 MSTATE=+1(-1), and TOUT=T. In this case the program
 will return with MSTATE unchanged, i.e.,
 MSTATE=+1(-1).)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 1000 steps without reaching TOUT. The user can
 continue the integration by simply calling DDRIV1
 again.
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value
 the program estimates is appropriate. The user can
 continue the integration by simply calling DDRIV1
 again.
 5 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.
 6 (Output)(Successful) For MSTATE negative, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling DDRIV1 again.
 7 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal

SLATEC3 (DACOSH through DS2Y) - 210

 value for a parameter or an inability to continue the
 solution. For this condition the user should take
 corrective action and reset MSTATE to +1(-1) before
 calling DDRIV1 again. Otherwise the program will
 terminate the run.

 EPS = On input, the requested relative accuracy in all solution
 components. On output, the adjusted relative accuracy if
 the input value was too small. The value of EPS should be
 set as large as is reasonable, because the amount of work
 done by DDRIV1 increases as EPS decreases.

 WORK
 LENW = (Input)
 WORK is an array of LENW double precision words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as
 DOUBLE PRECISION WORK(...)
 The length of WORK should be at least N*N + 11*N + 300
 and LENW should be set to the value used. The contents of
 WORK should not be disturbed between calls to DDRIV1.

 IERFLG = An error flag. The error number associated with a
 diagnostic message (see Section IV-A below) is the same as
 the corresponding value of IERFLG. The meaning of IERFLG:
 0 The routine completed successfully. (No message is
 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds 1000 .
 4 (Warning) The value of EPS is too small.
 11 (Warning) For MSTATE negative, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this
 message as a warning but does not return control to
 the user.)
 21 (Recoverable) N is greater than 200 .
 22 (Recoverable) N is not positive.
 26 (Recoverable) The magnitude of MSTATE is either 0 or
 greater than 7 .
 27 (Recoverable) EPS is less than zero.
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 999 (Fatal) The magnitude of MSTATE is 7 .

 III. USAGE ..

 PROGRAM SAMPLE
 EXTERNAL F
 DOUBLE PRECISION ALFA, EPS, T, TOUT
 C N is the number of equations
 PARAMETER(ALFA = 1.D0, N = 3, LENW = N*N + 11*N + 300)
 DOUBLE PRECISION WORK(LENW), Y(N+1)
 C Initial point

SLATEC3 (DACOSH through DS2Y) - 211

 T = 0.00001D0
 C Set initial conditions
 Y(1) = 10.D0
 Y(2) = 0.D0
 Y(3) = 10.D0
 C Pass parameter
 Y(4) = ALFA
 TOUT = T
 MSTATE = 1
 EPS = .001D0
 10 CALL DDRIV1 (N, T, Y, F, TOUT, MSTATE, EPS, WORK, LENW,
 8 IERFLG)
 IF (MSTATE .GT. 2) STOP
 WRITE(*, '(4E12.3)') TOUT, (Y(I), I=1,3)
 TOUT = 10.D0*TOUT
 IF (TOUT .LT. 50.D0) GO TO 10
 END

 SUBROUTINE F (N, T, Y, YDOT)
 DOUBLE PRECISION ALFA, T, Y(*), YDOT(*)
 ALFA = Y(N+1)
 YDOT(1) = 1.D0 + ALFA*(Y(2) - Y(1)) - Y(1)*Y(3)
 YDOT(2) = ALFA*(Y(1) - Y(2)) - Y(2)*Y(3)
 YDOT(3) = 1.D0 - Y(3)*(Y(1) + Y(2))
 END

 IV. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The number of evaluations of the right hand side can be found
 in the WORK array in the location determined by:
 LENW - (N + 50) + 4

 V. REMARKS ..

 For other information, see Section IV of the writeup for DDRIV3.

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in
 Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED DDRIV3, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 212

DDRIV2

 SUBROUTINE DDRIV2 (N, T, Y, F, TOUT, MSTATE, NROOT, EPS, EWT,
 8 MINT, WORK, LENW, IWORK, LENIW, G, IERFLG)
 ***BEGIN PROLOGUE DDRIV2
 ***PURPOSE The function of DDRIV2 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the
 initial conditions Y(I) = YI. The program has options to
 allow the solution of both stiff and non-stiff differential
 equations. DDRIV2 uses double precision arithmetic.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE DOUBLE PRECISION (SDRIV2-S, DDRIV2-D, CDRIV2-C)
 ***KEYWORDS DOUBLE PRECISION, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
 ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 I. PARAMETERS ...

 (REMEMBER--To run DDRIV2 correctly in double precision, ALL
 non-integer arguments in the call sequence, including
 arrays, MUST be declared double precision.)

 The user should use parameter names in the call sequence of DDRIV2
 for those quantities whose value may be altered by DDRIV2. The
 parameters in the call sequence are:

 N = (Input) The number of differential equations.

 T = The independent variable. On input for the first call, T
 is the initial point. On output, T is the point at which
 the solution is given.

 Y = The vector of dependent variables. Y is used as input on
 the first call, to set the initial values. On output, Y
 is the computed solution vector. This array Y is passed
 in the call sequence of the user-provided routines F and
 G. Thus parameters required by F and G can be stored in
 this array in components N+1 and above. (Note: Changes
 by the user to the first N components of this array will
 take effect only after a restart, i.e., after setting
 MSTATE to +1(-1).)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 DOUBLE PRECISION Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...

SLATEC3 (DACOSH through DS2Y) - 213

 .
 .
 YDOT(N) = ...
 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the
 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the
 user's declaration in the program which calls DDRIV2.
 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to DDRIV2. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls DDRIV2, he should set N to zero.
 DDRIV2 will signal this by returning a value of MSTATE
 equal to +6(-6). Altering the value of N in F has no
 effect on the value of N in the call sequence of DDRIV2.

 TOUT = (Input) The point at which the solution is desired.

 MSTATE = An integer describing the status of integration. The user
 must initialize MSTATE to +1 or -1. If MSTATE is
 positive, the routine will integrate past TOUT and
 interpolate the solution. This is the most efficient
 mode. If MSTATE is negative, the routine will adjust its
 internal step to reach TOUT exactly (useful if a
 singularity exists beyond TOUT.) The meaning of the
 magnitude of MSTATE:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of MSTATE should be tested by the
 user. Unless DDRIV2 is to be reinitialized, only the
 sign of MSTATE may be changed by the user. (As a
 convenience to the user who may wish to put out the
 initial conditions, DDRIV2 can be called with
 MSTATE=+1(-1), and TOUT=T. In this case the program
 will return with MSTATE unchanged, i.e.,
 MSTATE=+1(-1).)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 1000 steps without reaching TOUT. The user can
 continue the integration by simply calling DDRIV2
 again. Other than an error in problem setup, the
 most likely cause for this condition is trying to
 integrate a stiff set of equations with the non-stiff
 integrator option. (See description of MINT below.)
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value
 the program estimates is appropriate. The user can
 continue the integration by simply calling DDRIV2
 again.
 5 (Output) A root was found at a point less than TOUT.
 The user can continue the integration toward TOUT by

SLATEC3 (DACOSH through DS2Y) - 214

 simply calling DDRIV2 again.
 6 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.
 7 (Output)(Unsuccessful) N has been set to zero in
 FUNCTION G. See description of G below.
 8 (Output)(Successful) For MSTATE negative, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling DDRIV2 again.
 9 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal
 value for a parameter or an inability to continue the
 solution. For this condition the user should take
 corrective action and reset MSTATE to +1(-1) before
 calling DDRIV2 again. Otherwise the program will
 terminate the run.

 NROOT = (Input) The number of equations whose roots are desired.
 If NROOT is zero, the root search is not active. This
 option is useful for obtaining output at points which are
 not known in advance, but depend upon the solution, e.g.,
 when some solution component takes on a specified value.
 The root search is carried out using the user-written
 function G (see description of G below.) DDRIV2 attempts
 to find the value of T at which one of the equations
 changes sign. DDRIV2 can find at most one root per
 equation per internal integration step, and will then
 return the solution either at TOUT or at a root, whichever
 occurs first in the direction of integration. The initial
 point is never reported as a root. The index of the
 equation whose root is being reported is stored in the
 sixth element of IWORK.
 NOTE: NROOT is never altered by this program.

 EPS = On input, the requested relative accuracy in all solution
 components. EPS = 0 is allowed. On output, the adjusted
 relative accuracy if the input value was too small. The
 value of EPS should be set as large as is reasonable,
 because the amount of work done by DDRIV2 increases as
 EPS decreases.

 EWT = (Input) Problem zero, i.e., the smallest physically
 meaningful value for the solution. This is used inter-
 nally to compute an array YWT(I) = MAX(ABS(Y(I)), EWT).
 One step error estimates divided by YWT(I) are kept less
 than EPS. Setting EWT to zero provides pure relative
 error control. However, setting EWT smaller than
 necessary can adversely affect the running time.

 MINT = (Input) The integration method flag.
 MINT = 1 Means the Adams methods, and is used for
 non-stiff problems.
 MINT = 2 Means the stiff methods of Gear (i.e., the
 backward differentiation formulas), and is
 used for stiff problems.
 MINT = 3 Means the program dynamically selects the
 Adams methods when the problem is non-stiff
 and the Gear methods when the problem is

SLATEC3 (DACOSH through DS2Y) - 215

 stiff.
 MINT may not be changed without restarting, i.e., setting
 the magnitude of MSTATE to 1.

 WORK
 LENW = (Input)
 WORK is an array of LENW double precision words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as
 DOUBLE PRECISION WORK(...)
 The length of WORK should be at least
 16*N + 2*NROOT + 250 if MINT is 1, or
 N*N + 10*N + 2*NROOT + 250 if MINT is 2, or
 N*N + 17*N + 2*NROOT + 250 if MINT is 3,
 and LENW should be set to the value used. The contents of
 WORK should not be disturbed between calls to DDRIV2.

 IWORK
 LENIW = (Input)
 IWORK is an integer array of length LENIW used internally
 for temporary storage. The user must allocate space for
 this array in the calling program by a statement such as
 INTEGER IWORK(...)
 The length of IWORK should be at least
 50 if MINT is 1, or
 N+50 if MINT is 2 or 3,
 and LENIW should be set to the value used. The contents
 of IWORK should not be disturbed between calls to DDRIV2.

 G = A double precision FORTRAN function supplied by the user
 if NROOT is not 0. In this case, the name must be
 declared EXTERNAL in the user's calling program. G is
 repeatedly called with different values of IROOT to
 obtain the value of each of the NROOT equations for which
 a root is desired. G is of the form:
 DOUBLE PRECISION FUNCTION G (N, T, Y, IROOT)
 DOUBLE PRECISION Y(*)
 GO TO (10, ...), IROOT
 10 G = ...
 .
 .
 END (Sample)
 Here, Y is a vector of length at least N, whose first N
 components are the solution components at the point T.
 The user should not alter these values. The actual length
 of Y is determined by the user's declaration in the
 program which calls DDRIV2. Thus the dimensioning of Y in
 G, while required by FORTRAN convention, does not actually
 allocate any storage. Normally a return from G passes
 control back to DDRIV2. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls DDRIV2, he should set N to zero.
 DDRIV2 will signal this by returning a value of MSTATE
 equal to +7(-7). In this case, the index of the equation
 being evaluated is stored in the sixth element of IWORK.
 Altering the value of N in G has no effect on the value of
 N in the call sequence of DDRIV2.

 IERFLG = An error flag. The error number associated with a

SLATEC3 (DACOSH through DS2Y) - 216

 diagnostic message (see Section II-A below) is the same as
 the corresponding value of IERFLG. The meaning of IERFLG:
 0 The routine completed successfully. (No message is
 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds MXSTEP.
 4 (Warning) The value of EPS is too small.
 11 (Warning) For MSTATE negative, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this
 message as a warning but does not return control to
 the user.)
 22 (Recoverable) N is not positive.
 23 (Recoverable) MINT is less than 1 or greater than 3 .
 26 (Recoverable) The magnitude of MSTATE is either 0 or
 greater than 9 .
 27 (Recoverable) EPS is less than zero.
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 33 (Recoverable) Insufficient storage has been allocated
 for the IWORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 999 (Fatal) The magnitude of MSTATE is 9 .

 II. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The first three elements of WORK and the first five elements of
 IWORK will contain the following statistical data:
 AVGH The average step size used.
 HUSED The step size last used (successfully).
 AVGORD The average order used.
 IMXERR The index of the element of the solution vector that
 contributed most to the last error test.
 NQUSED The order last used (successfully).
 NSTEP The number of steps taken since last initialization.
 NFE The number of evaluations of the right hand side.
 NJE The number of evaluations of the Jacobian matrix.

 III. REMARKS ..

 A. On any return from DDRIV2 all information necessary to continue
 the calculation is contained in the call sequence parameters,
 including the work arrays. Thus it is possible to suspend one
 problem, integrate another, and then return to the first.

 B. If this package is to be used in an overlay situation, the user

SLATEC3 (DACOSH through DS2Y) - 217

 must declare in the primary overlay the variables in the call
 sequence to DDRIV2.

 C. When the routine G is not required, difficulties associated with
 an unsatisfied external can be avoided by using the name of the
 routine which calculates the right hand side of the differential
 equations in place of G in the call sequence of DDRIV2.

 IV. USAGE ...

 PROGRAM SAMPLE
 EXTERNAL F
 PARAMETER(MINT = 1, NROOT = 0, N = ...,
 8 LENW = 16*N + 2*NROOT + 250, LENIW = 50)
 C N is the number of equations
 DOUBLE PRECISION EPS, EWT, T, TOUT, WORK(LENW), Y(N)
 INTEGER IWORK(LENIW)
 OPEN(FILE='TAPE6', UNIT=6, STATUS='NEW')
 C Initial point
 T = 0.
 C Set initial conditions
 DO 10 I = 1,N
 10 Y(I) = ...
 TOUT = T
 EWT = ...
 MSTATE = 1
 EPS = ...
 20 CALL DDRIV2 (N, T, Y, F, TOUT, MSTATE, NROOT, EPS, EWT,
 8 MINT, WORK, LENW, IWORK, LENIW, F, IERFLG)
 C Next to last argument is not
 C F if rootfinding is used.
 IF (MSTATE .GT. 2) STOP
 WRITE(6, 100) TOUT, (Y(I), I=1,N)
 TOUT = TOUT + 1.
 IF (TOUT .LE. 10.) GO TO 20
 100 FORMAT(...)
 END (Sample)

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in
 Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED DDRIV3, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 218

DDRIV3

 SUBROUTINE DDRIV3 (N, T, Y, F, NSTATE, TOUT, NTASK, NROOT,
 8 EPS, EWT, IERROR, MINT, MITER, IMPL, ML, MU, MXORD, HMAX,
 8 LENW, IWORK, LENIW, JACOBN, FA, NDE, MXSTEP, G, USERS, IERFLG)
 ***BEGIN PROLOGUE DDRIV3
 ***PURPOSE The function of DDRIV3 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the
 initial conditions Y(I) = YI. The program has options to
 allow the solution of both stiff and non-stiff differential
 equations. Other important options are available. DDRIV3
 uses double precision arithmetic.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE DOUBLE PRECISION (SDRIV3-S, DDRIV3-D, CDRIV3-C)
 ***KEYWORDS DOUBLE PRECISION, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
 ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 I. ABSTRACT ...

 The primary function of DDRIV3 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the initial
 conditions Y(I) = YI. The program has options to allow the
 solution of both stiff and non-stiff differential equations. In
 addition, DDRIV3 may be used to solve:
 1. The initial value problem, A*dY(I)/dT = F(Y(I),T), where A is
 a non-singular matrix depending on Y and T.
 2. The hybrid differential/algebraic initial value problem,
 A*dY(I)/dT = F(Y(I),T), where A is a vector (whose values may
 depend upon Y and T) some of whose components will be zero
 corresponding to those equations which are algebraic rather
 than differential.
 DDRIV3 is to be called once for each output point of T.

 II. PARAMETERS ..
 (REMEMBER--To run DDRIV3 correctly in double precision, ALL
 non-integer arguments in the call sequence, including
 arrays, MUST be declared double precision.)

 The user should use parameter names in the call sequence of DDRIV3
 for those quantities whose value may be altered by DDRIV3. The
 parameters in the call sequence are:

 N = (Input) The number of dependent functions whose solution
 is desired. N must not be altered during a problem.

 T = The independent variable. On input for the first call, T
 is the initial point. On output, T is the point at which
 the solution is given.

SLATEC3 (DACOSH through DS2Y) - 219

 Y = The vector of dependent variables. Y is used as input on
 the first call, to set the initial values. On output, Y
 is the computed solution vector. This array Y is passed
 in the call sequence of the user-provided routines F,
 JACOBN, FA, USERS, and G. Thus parameters required by
 those routines can be stored in this array in components
 N+1 and above. (Note: Changes by the user to the first
 N components of this array will take effect only after a
 restart, i.e., after setting NSTATE to 1 .)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 DOUBLE PRECISION Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...
 .
 .
 YDOT(N) = ...
 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the
 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the
 user's declaration in the program which calls DDRIV3.
 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to DDRIV3. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls DDRIV3, he should set N to zero.
 DDRIV3 will signal this by returning a value of NSTATE
 equal to 6 . Altering the value of N in F has no effect
 on the value of N in the call sequence of DDRIV3.

 NSTATE = An integer describing the status of integration. The
 meaning of NSTATE is as follows:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of NSTATE should be tested by the
 user, but must not be altered. (As a convenience to
 the user who may wish to put out the initial
 conditions, DDRIV3 can be called with NSTATE=1, and
 TOUT=T. In this case the program will return with
 NSTATE unchanged, i.e., NSTATE=1.)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 MXSTEP steps without reaching TOUT. The user can
 continue the integration by simply calling DDRIV3
 again.
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value

SLATEC3 (DACOSH through DS2Y) - 220

 the program estimates is appropriate. The user can
 continue the integration by simply calling DDRIV3
 again.
 5 (Output) A root was found at a point less than TOUT.
 The user can continue the integration toward TOUT by
 simply calling DDRIV3 again.
 6 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.
 7 (Output)(Unsuccessful) N has been set to zero in
 FUNCTION G. See description of G below.
 8 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE JACOBN. See description of JACOBN below.
 9 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE FA. See description of FA below.
 10 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE USERS. See description of USERS below.
 11 (Output)(Successful) For NTASK = 2 or 3, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling DDRIV3 again.
 12 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal
 value for a parameter or an inability to continue the
 solution. For this condition the user should take
 corrective action and reset NSTATE to 1 before
 calling DDRIV3 again. Otherwise the program will
 terminate the run.

 TOUT = (Input) The point at which the solution is desired. The
 position of TOUT relative to T on the first call
 determines the direction of integration.

 NTASK = (Input) An index specifying the manner of returning the
 solution, according to the following:
 NTASK = 1 Means DDRIV3 will integrate past TOUT and
 interpolate the solution. This is the most
 efficient mode.
 NTASK = 2 Means DDRIV3 will return the solution after
 each internal integration step, or at TOUT,
 whichever comes first. In the latter case,
 the program integrates exactly to TOUT.
 NTASK = 3 Means DDRIV3 will adjust its internal step to
 reach TOUT exactly (useful if a singularity
 exists beyond TOUT.)

 NROOT = (Input) The number of equations whose roots are desired.
 If NROOT is zero, the root search is not active. This
 option is useful for obtaining output at points which are
 not known in advance, but depend upon the solution, e.g.,
 when some solution component takes on a specified value.
 The root search is carried out using the user-written
 function G (see description of G below.) DDRIV3 attempts
 to find the value of T at which one of the equations
 changes sign. DDRIV3 can find at most one root per
 equation per internal integration step, and will then
 return the solution either at TOUT or at a root, whichever
 occurs first in the direction of integration. The initial
 point is never reported as a root. The index of the

SLATEC3 (DACOSH through DS2Y) - 221

 equation whose root is being reported is stored in the
 sixth element of IWORK.
 NOTE: NROOT is never altered by this program.

 EPS = On input, the requested relative accuracy in all solution
 components. EPS = 0 is allowed. On output, the adjusted
 relative accuracy if the input value was too small. The
 value of EPS should be set as large as is reasonable,
 because the amount of work done by DDRIV3 increases as EPS
 decreases.

 EWT = (Input) Problem zero, i.e., the smallest, nonzero,
 physically meaningful value for the solution. (Array,
 possibly of length one. See following description of
 IERROR.) Setting EWT smaller than necessary can adversely
 affect the running time.

 IERROR = (Input) Error control indicator. A value of 3 is
 suggested for most problems. Other choices and detailed
 explanations of EWT and IERROR are given below for those
 who may need extra flexibility.

 These last three input quantities EPS, EWT and IERROR
 control the accuracy of the computed solution. EWT and
 IERROR are used internally to compute an array YWT. One
 step error estimates divided by YWT(I) are kept less than
 EPS in root mean square norm.
 IERROR (Set by the user) =
 1 Means YWT(I) = 1. (Absolute error control)
 EWT is ignored.
 2 Means YWT(I) = ABS(Y(I)), (Relative error control)
 EWT is ignored.
 3 Means YWT(I) = MAX(ABS(Y(I)), EWT(1)).
 4 Means YWT(I) = MAX(ABS(Y(I)), EWT(I)).
 This choice is useful when the solution components
 have differing scales.
 5 Means YWT(I) = EWT(I).
 If IERROR is 3, EWT need only be dimensioned one.
 If IERROR is 4 or 5, the user must dimension EWT at least
 N, and set its values.

 MINT = (Input) The integration method indicator.
 MINT = 1 Means the Adams methods, and is used for
 non-stiff problems.
 MINT = 2 Means the stiff methods of Gear (i.e., the
 backward differentiation formulas), and is
 used for stiff problems.
 MINT = 3 Means the program dynamically selects the
 Adams methods when the problem is non-stiff
 and the Gear methods when the problem is
 stiff. When using the Adams methods, the
 program uses a value of MITER=0; when using
 the Gear methods, the program uses the value
 of MITER provided by the user. Only a value
 of IMPL = 0 and a value of MITER = 1, 2, 4, or
 5 is allowed for this option. The user may
 not alter the value of MINT or MITER without
 restarting, i.e., setting NSTATE to 1.

 MITER = (Input) The iteration method indicator.

SLATEC3 (DACOSH through DS2Y) - 222

 MITER = 0 Means functional iteration. This value is
 suggested for non-stiff problems.
 MITER = 1 Means chord method with analytic Jacobian.
 In this case, the user supplies subroutine
 JACOBN (see description below).
 MITER = 2 Means chord method with Jacobian calculated
 internally by finite differences.
 MITER = 3 Means chord method with corrections computed
 by the user-written routine USERS (see
 description of USERS below.) This option
 allows all matrix algebra and storage
 decisions to be made by the user. When using
 a value of MITER = 3, the subroutine FA is
 not required, even if IMPL is not 0. For
 further information on using this option, see
 Section IV-E below.
 MITER = 4 Means the same as MITER = 1 but the A and
 Jacobian matrices are assumed to be banded.
 MITER = 5 Means the same as MITER = 2 but the A and
 Jacobian matrices are assumed to be banded.

 IMPL = (Input) The implicit method indicator.
 IMPL = 0 Means solving dY(I)/dT = F(Y(I),T).
 IMPL = 1 Means solving A*dY(I)/dT = F(Y(I),T), non-
 singular A (see description of FA below.)
 Only MINT = 1 or 2, and MITER = 1, 2, 3, 4,
 or 5 are allowed for this option.
 IMPL = 2,3 Means solving certain systems of hybrid
 differential/algebraic equations (see
 description of FA below.) Only MINT = 2 and
 MITER = 1, 2, 3, 4, or 5, are allowed for
 this option.
 The value of IMPL must not be changed during a problem.

 ML = (Input) The lower half-bandwidth in the case of a banded
 A or Jacobian matrix. (I.e., maximum(R-C) for nonzero
 A(R,C).)

 MU = (Input) The upper half-bandwidth in the case of a banded
 A or Jacobian matrix. (I.e., maximum(C-R).)

 MXORD = (Input) The maximum order desired. This is .LE. 12 for
 the Adams methods and .LE. 5 for the Gear methods. Normal
 value is 12 and 5, respectively. If MINT is 3, the
 maximum order used will be MIN(MXORD, 12) when using the
 Adams methods, and MIN(MXORD, 5) when using the Gear
 methods. MXORD must not be altered during a problem.

 HMAX = (Input) The maximum magnitude of the step size that will
 be used for the problem. This is useful for ensuring that
 important details are not missed. If this is not the
 case, a large value, such as the interval length, is
 suggested.

 WORK
 LENW = (Input)
 WORK is an array of LENW double precision words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as

SLATEC3 (DACOSH through DS2Y) - 223

 DOUBLE PRECISION WORK(...)
 The following table gives the required minimum value for
 the length of WORK, depending on the value of IMPL and
 MITER. LENW should be set to the value used. The
 contents of WORK should not be disturbed between calls to
 DDRIV3.

 IMPL = 0 1 2 3

 MITER = 0 (MXORD+4)*N Not allowed Not allowed Not allowed
 + 2*NROOT
 + 250

 1,2 N*N + 2*N*N + N*N + N*(N + NDE)
 (MXORD+5)*N (MXORD+5)*N (MXORD+6)*N + (MXORD+5)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 3 (MXORD+4)*N (MXORD+4)*N (MXORD+4)*N (MXORD+4)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 4,5 (2*ML+MU+1) 2*(2*ML+MU+1) (2*ML+MU+1) (2*ML+MU+1)*
 *N + *N + *N + (N+NDE) +
 (MXORD+5)*N (MXORD+5)*N (MXORD+6)*N + (MXORD+5)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 IWORK
 LENIW = (Input)
 IWORK is an integer array of length LENIW used internally
 for temporary storage. The user must allocate space for
 this array in the calling program by a statement such as
 INTEGER IWORK(...)
 The length of IWORK should be at least
 50 if MITER is 0 or 3, or
 N+50 if MITER is 1, 2, 4, or 5, or MINT is 3,
 and LENIW should be set to the value used. The contents
 of IWORK should not be disturbed between calls to DDRIV3.

 JACOBN = A subroutine supplied by the user, if MITER is 1 or 4.
 If this is the case, the name must be declared EXTERNAL in
 the user's calling program. Given a system of N
 differential equations, it is meaningful to speak about
 the partial derivative of the I-th right hand side with
 respect to the J-th dependent variable. In general there
 are N*N such quantities. Often however the equations can
 be ordered so that the I-th differential equation only
 involves dependent variables with index near I, e.g., I+1,
 I-2. Such a system is called banded. If, for all I, the
 I-th equation depends on at most the variables
 Y(I-ML), Y(I-ML+1), ... , Y(I), Y(I+1), ... , Y(I+MU)
 then we call ML+MU+1 the bandwidth of the system. In a
 banded system many of the partial derivatives above are
 automatically zero. For the cases MITER = 1, 2, 4, and 5,
 some of these partials are needed. For the cases
 MITER = 2 and 5 the necessary derivatives are
 approximated numerically by DDRIV3, and we only ask the
 user to tell DDRIV3 the value of ML and MU if the system

SLATEC3 (DACOSH through DS2Y) - 224

 is banded. For the cases MITER = 1 and 4 the user must
 derive these partials algebraically and encode them in
 subroutine JACOBN. By computing these derivatives the
 user can often save 20-30 per cent of the computing time.
 Usually, however, the accuracy is not much affected and
 most users will probably forego this option. The optional
 user-written subroutine JACOBN has the form:
 SUBROUTINE JACOBN (N, T, Y, DFDY, MATDIM, ML, MU)
 DOUBLE PRECISION Y(*), DFDY(MATDIM,*)
 .
 .
 Calculate values of DFDY
 .
 .
 END (Sample)
 Here Y is a vector of length at least N. The actual
 length of Y is determined by the user's declaration in the
 program which calls DDRIV3. Thus the dimensioning of Y in
 JACOBN, while required by FORTRAN convention, does not
 actually allocate any storage. When this subroutine is
 called, the first N components of Y are intermediate
 approximations to the solution components. The user
 should not alter these values. If the system is not
 banded (MITER=1), the partials of the I-th equation with
 respect to the J-th dependent function are to be stored in
 DFDY(I,J). Thus partials of the I-th equation are stored
 in the I-th row of DFDY. If the system is banded
 (MITER=4), then the partials of the I-th equation with
 respect to Y(J) are to be stored in DFDY(K,J), where
 K=I-J+MU+1 . Normally a return from JACOBN passes control
 back to DDRIV3. However, if the user would like to abort
 the calculation, i.e., return control to the program which
 calls DDRIV3, he should set N to zero. DDRIV3 will signal
 this by returning a value of NSTATE equal to +8(-8).
 Altering the value of N in JACOBN has no effect on the
 value of N in the call sequence of DDRIV3.

 FA = A subroutine supplied by the user if IMPL is not zero, and
 MITER is not 3. If so, the name must be declared EXTERNAL
 in the user's calling program. This subroutine computes
 the array A, where A*dY(I)/dT = F(Y(I),T).
 There are three cases:

 IMPL=1.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 DOUBLE PRECISION Y(*), A(MATDIM,*)
 .
 .
 Calculate ALL values of A
 .
 .
 END (Sample)
 In this case A is assumed to be a nonsingular matrix,
 with the same structure as DFDY (see JACOBN description
 above). Programming considerations prevent complete
 generality. If MITER is 1 or 2, A is assumed to be full
 and the user must compute and store all values of
 A(I,J), I,J=1, ... ,N. If MITER is 4 or 5, A is assumed
 to be banded with lower and upper half bandwidth ML and

SLATEC3 (DACOSH through DS2Y) - 225

 MU. The left hand side of the I-th equation is a linear
 combination of dY(I-ML)/dT, dY(I-ML+1)/dT, ... ,
 dY(I)/dT, ... , dY(I+MU-1)/dT, dY(I+MU)/dT. Thus in the
 I-th equation, the coefficient of dY(J)/dT is to be
 stored in A(K,J), where K=I-J+MU+1.
 NOTE: The array A will be altered between calls to FA.

 IMPL=2.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 DOUBLE PRECISION Y(*), A(*)
 .
 .
 Calculate non-zero values of A(1),...,A(NDE)
 .
 .
 END (Sample)
 In this case it is assumed that the system is ordered by
 the user so that the differential equations appear
 first, and the algebraic equations appear last. The
 algebraic equations must be written in the form:
 0 = F(Y(I),T). When using this option it is up to the
 user to provide initial values for the Y(I) that satisfy
 the algebraic equations as well as possible. It is
 further assumed that A is a vector of length NDE. All
 of the components of A, which may depend on T, Y(I),
 etc., must be set by the user to non-zero values.

 IMPL=3.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 DOUBLE PRECISION Y(*), A(MATDIM,*)
 .
 .
 Calculate ALL values of A
 .
 .
 END (Sample)
 In this case A is assumed to be a nonsingular NDE by NDE
 matrix with the same structure as DFDY (see JACOBN
 description above). Programming considerations prevent
 complete generality. If MITER is 1 or 2, A is assumed
 to be full and the user must compute and store all
 values of A(I,J), I,J=1, ... ,NDE. If MITER is 4 or 5,
 A is assumed to be banded with lower and upper half
 bandwidths ML and MU. The left hand side of the I-th
 equation is a linear combination of dY(I-ML)/dT,
 dY(I-ML+1)/dT, ... , dY(I)/dT, ... , dY(I+MU-1)/dT,
 dY(I+MU)/dT. Thus in the I-th equation, the coefficient
 of dY(J)/dT is to be stored in A(K,J), where K=I-J+MU+1.
 It is assumed that the system is ordered by the user so
 that the differential equations appear first, and the
 algebraic equations appear last. The algebraic
 equations must be written in the form 0 = F(Y(I),T).
 When using this option it is up to the user to provide
 initial values for the Y(I) that satisfy the algebraic
 equations as well as possible.
 NOTE: For IMPL = 3, the array A will be altered between
 calls to FA.
 Here Y is a vector of length at least N. The actual

SLATEC3 (DACOSH through DS2Y) - 226

 length of Y is determined by the user's declaration in the
 program which calls DDRIV3. Thus the dimensioning of Y in
 FA, while required by FORTRAN convention, does not
 actually allocate any storage. When this subroutine is
 called, the first N components of Y are intermediate
 approximations to the solution components. The user
 should not alter these values. FA is always called
 immediately after calling F, with the same values of T
 and Y. Normally a return from FA passes control back to
 DDRIV3. However, if the user would like to abort the
 calculation, i.e., return control to the program which
 calls DDRIV3, he should set N to zero. DDRIV3 will signal
 this by returning a value of NSTATE equal to +9(-9).
 Altering the value of N in FA has no effect on the value
 of N in the call sequence of DDRIV3.

 NDE = (Input) The number of differential equations. This is
 required only for IMPL = 2 or 3, with NDE .LT. N.

 MXSTEP = (Input) The maximum number of internal steps allowed on
 one call to DDRIV3.

 G = A double precision FORTRAN function supplied by the user
 if NROOT is not 0. In this case, the name must be
 declared EXTERNAL in the user's calling program. G is
 repeatedly called with different values of IROOT to obtain
 the value of each of the NROOT equations for which a root
 is desired. G is of the form:
 DOUBLE PRECISION FUNCTION G (N, T, Y, IROOT)
 DOUBLE PRECISION Y(*)
 GO TO (10, ...), IROOT
 10 G = ...
 .
 .
 END (Sample)
 Here, Y is a vector of length at least N, whose first N
 components are the solution components at the point T.
 The user should not alter these values. The actual length
 of Y is determined by the user's declaration in the
 program which calls DDRIV3. Thus the dimensioning of Y in
 G, while required by FORTRAN convention, does not actually
 allocate any storage. Normally a return from G passes
 control back to DDRIV3. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls DDRIV3, he should set N to zero.
 DDRIV3 will signal this by returning a value of NSTATE
 equal to +7(-7). In this case, the index of the equation
 being evaluated is stored in the sixth element of IWORK.
 Altering the value of N in G has no effect on the value of
 N in the call sequence of DDRIV3.

 USERS = A subroutine supplied by the user, if MITER is 3.
 If this is the case, the name must be declared EXTERNAL in
 the user's calling program. The routine USERS is called
 by DDRIV3 when certain linear systems must be solved. The
 user may choose any method to form, store and solve these
 systems in order to obtain the solution result that is
 returned to DDRIV3. In particular, this allows sparse
 matrix methods to be used. The call sequence for this
 routine is:

SLATEC3 (DACOSH through DS2Y) - 227

 SUBROUTINE USERS (Y, YH, YWT, SAVE1, SAVE2, T, H, EL,
 8 IMPL, N, NDE, IFLAG)
 DOUBLE PRECISION Y(*), YH(*), YWT(*), SAVE1(*),
 8 SAVE2(*), T, H, EL

 The input variable IFLAG indicates what action is to be
 taken. Subroutine USERS should perform the following
 operations, depending on the value of IFLAG and IMPL.

 IFLAG = 0
 IMPL = 0. USERS is not called.
 IMPL = 1, 2 or 3. Solve the system A*X = SAVE2,
 returning the result in SAVE2. The array SAVE1 can
 be used as a work array. For IMPL = 1, there are N
 components to the system, and for IMPL = 2 or 3,
 there are NDE components to the system.

 IFLAG = 1
 IMPL = 0. Compute, decompose and store the matrix
 (I - H*EL*J), where I is the identity matrix and J
 is the Jacobian matrix of the right hand side. The
 array SAVE1 can be used as a work array.
 IMPL = 1, 2 or 3. Compute, decompose and store the
 matrix (A - H*EL*J). The array SAVE1 can be used as
 a work array.

 IFLAG = 2
 IMPL = 0. Solve the system
 (I - H*EL*J)*X = H*SAVE2 - YH - SAVE1,
 returning the result in SAVE2.
 IMPL = 1, 2 or 3. Solve the system
 (A - H*EL*J)*X = H*SAVE2 - A*(YH + SAVE1)
 returning the result in SAVE2.
 The array SAVE1 should not be altered.
 If IFLAG is 0 and IMPL is 1 or 2 and the matrix A is
 singular, or if IFLAG is 1 and one of the matrices
 (I - H*EL*J), (A - H*EL*J) is singular, the INTEGER
 variable IFLAG is to be set to -1 before RETURNing.
 Normally a return from USERS passes control back to
 DDRIV3. However, if the user would like to abort the
 calculation, i.e., return control to the program which
 calls DDRIV3, he should set N to zero. DDRIV3 will signal
 this by returning a value of NSTATE equal to +10(-10).
 Altering the value of N in USERS has no effect on the
 value of N in the call sequence of DDRIV3.

 IERFLG = An error flag. The error number associated with a
 diagnostic message (see Section III-A below) is the same
 as the corresponding value of IERFLG. The meaning of
 IERFLG:
 0 The routine completed successfully. (No message is
 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds MXSTEP.
 4 (Warning) The value of EPS is too small.
 11 (Warning) For NTASK = 2 or 3, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this

SLATEC3 (DACOSH through DS2Y) - 228

 message as a warning but does not return control to
 the user.)
 22 (Recoverable) N is not positive.
 23 (Recoverable) MINT is less than 1 or greater than 3 .
 24 (Recoverable) MITER is less than 0 or greater than
 5 .
 25 (Recoverable) IMPL is less than 0 or greater than 3 .
 26 (Recoverable) The value of NSTATE is less than 1 or
 greater than 12 .
 27 (Recoverable) EPS is less than zero.
 28 (Recoverable) MXORD is not positive.
 29 (Recoverable) For MINT = 3, either MITER = 0 or 3, or
 IMPL = 0 .
 30 (Recoverable) For MITER = 0, IMPL is not 0 .
 31 (Recoverable) For MINT = 1, IMPL is 2 or 3 .
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 33 (Recoverable) Insufficient storage has been allocated
 for the IWORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 43 (Recoverable) For IMPL greater than 0, the matrix A
 is singular.
 999 (Fatal) The value of NSTATE is 12 .

 III. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The first three elements of WORK and the first five elements of
 IWORK will contain the following statistical data:
 AVGH The average step size used.
 HUSED The step size last used (successfully).
 AVGORD The average order used.
 IMXERR The index of the element of the solution vector that
 contributed most to the last error test.
 NQUSED The order last used (successfully).
 NSTEP The number of steps taken since last initialization.
 NFE The number of evaluations of the right hand side.
 NJE The number of evaluations of the Jacobian matrix.

 IV. REMARKS ...

 A. Other routines used:
 DDNTP, DDZRO, DDSTP, DDNTL, DDPST, DDCOR, DDCST,
 DDPSC, and DDSCL;
 DGEFA, DGESL, DGBFA, DGBSL, and DNRM2 (from LINPACK)
 D1MACH (from the Bell Laboratories Machine Constants Package)
 XERMSG (from the SLATEC Common Math Library)
 The last seven routines above, not having been written by the

SLATEC3 (DACOSH through DS2Y) - 229

 present authors, are not explicitly part of this package.

 B. On any return from DDRIV3 all information necessary to continue
 the calculation is contained in the call sequence parameters,
 including the work arrays. Thus it is possible to suspend one
 problem, integrate another, and then return to the first.

 C. If this package is to be used in an overlay situation, the user
 must declare in the primary overlay the variables in the call
 sequence to DDRIV3.

 D. Changing parameters during an integration.
 The value of NROOT, EPS, EWT, IERROR, MINT, MITER, or HMAX may
 be altered by the user between calls to DDRIV3. For example, if
 too much accuracy has been requested (the program returns with
 NSTATE = 4 and an increased value of EPS) the user may wish to
 increase EPS further. In general, prudence is necessary when
 making changes in parameters since such changes are not
 implemented until the next integration step, which is not
 necessarily the next call to DDRIV3. This can happen if the
 program has already integrated to a point which is beyond the
 new point TOUT.

 E. As the price for complete control of matrix algebra, the DDRIV3
 USERS option puts all responsibility for Jacobian matrix
 evaluation on the user. It is often useful to approximate
 numerically all or part of the Jacobian matrix. However this
 must be done carefully. The FORTRAN sequence below illustrates
 the method we recommend. It can be inserted directly into
 subroutine USERS to approximate Jacobian elements in rows I1
 to I2 and columns J1 to J2.
 DOUBLE PRECISION DFDY(N,N), EPSJ, H, R, D1MACH,
 8 SAVE1(N), SAVE2(N), T, UROUND, Y(N), YJ, YWT(N)
 UROUND = D1MACH(4)
 EPSJ = SQRT(UROUND)
 DO 30 J = J1,J2
 R = EPSJ*MAX(ABS(YWT(J)), ABS(Y(J)))
 IF (R .EQ. 0.D0) R = YWT(J)
 YJ = Y(J)
 Y(J) = Y(J) + R
 CALL F (N, T, Y, SAVE1)
 IF (N .EQ. 0) RETURN
 Y(J) = YJ
 DO 20 I = I1,I2
 20 DFDY(I,J) = (SAVE1(I) - SAVE2(I))/R
 30 CONTINUE
 Many problems give rise to structured sparse Jacobians, e.g.,
 block banded. It is possible to approximate them with fewer
 function evaluations than the above procedure uses; see Curtis,
 Powell and Reid, J. Inst. Maths Applics, (1974), Vol. 13,
 pp. 117-119.

 F. When any of the routines JACOBN, FA, G, or USERS, is not
 required, difficulties associated with unsatisfied externals can
 be avoided by using the name of the routine which calculates the
 right hand side of the differential equations in place of the
 corresponding name in the call sequence of DDRIV3.

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in
 Ordinary Differential Equations, Prentice-Hall, 1971.

SLATEC3 (DACOSH through DS2Y) - 230

 ***ROUTINES CALLED D1MACH, DDNTP, DDSTP, DDZRO, DGBFA, DGBSL, DGEFA,
 DGESL, DNRM2, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 231

DE1

 DOUBLE PRECISION FUNCTION DE1 (X)
 ***BEGIN PROLOGUE DE1
 ***PURPOSE Compute the exponential integral E1(X).
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C5
 ***TYPE DOUBLE PRECISION (E1-S, DE1-D)
 ***KEYWORDS E1 FUNCTION, EXPONENTIAL INTEGRAL, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DE1 calculates the double precision exponential integral, E1(X), for
 positive double precision argument X and the Cauchy principal value
 for negative X. If principal values are used everywhere, then, for
 all X,

 E1(X) = -Ei(-X)
 or
 Ei(X) = -E1(-X).

 Series for AE10 on the interval -3.12500E-02 to 0.
 with weighted error 4.62E-32
 log weighted error 31.34
 significant figures required 29.70
 decimal places required 32.18

 Series for AE11 on the interval -1.25000E-01 to -3.12500E-02
 with weighted error 2.22E-32
 log weighted error 31.65
 significant figures required 30.75
 decimal places required 32.54

 Series for AE12 on the interval -2.50000E-01 to -1.25000E-01
 with weighted error 5.19E-32
 log weighted error 31.28
 significant figures required 30.82
 decimal places required 32.09

 Series for E11 on the interval -4.00000E+00 to -1.00000E+00
 with weighted error 8.49E-34
 log weighted error 33.07
 significant figures required 34.13
 decimal places required 33.80

 Series for E12 on the interval -1.00000E+00 to 1.00000E+00
 with weighted error 8.08E-33
 log weighted error 32.09
 approx significant figures required 30.4
 decimal places required 32.79

SLATEC3 (DACOSH through DS2Y) - 232

 Series for AE13 on the interval 2.50000E-01 to 1.00000E+00
 with weighted error 6.65E-32
 log weighted error 31.18
 significant figures required 30.69
 decimal places required 32.03

 Series for AE14 on the interval 0. to 2.50000E-01
 with weighted error 5.07E-32
 log weighted error 31.30
 significant figures required 30.40
 decimal places required 32.20

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891115 Modified prologue description. (WRB)
 891115 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 233

DEABM

 SUBROUTINE DEABM (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
 + RWORK, LRW, IWORK, LIW, RPAR, IPAR)
 ***BEGIN PROLOGUE DEABM
 ***PURPOSE Solve an initial value problem in ordinary differential
 equations using an Adams-Bashforth method.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A1B
 ***TYPE SINGLE PRECISION (DEABM-S, DDEABM-D)
 ***KEYWORDS ADAMS-BASHFORTH METHOD, DEPAC, INITIAL VALUE PROBLEMS,
 ODE, ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR
 ***AUTHOR Shampine, L. F., (SNLA)
 Watts, H. A., (SNLA)
 ***DESCRIPTION

 This is the Adams code in the package of differential equation
 solvers DEPAC, consisting of the codes DERKF, DEABM, and DEBDF.
 Design of the package was by L. F. Shampine and H. A. Watts.
 It is documented in
 SAND79-2374 , DEPAC - Design of a User Oriented Package of ODE
 Solvers.
 DEABM is a driver for a modification of the code ODE written by
 L. F. Shampine and M. K. Gordon
 Sandia Laboratories
 Albuquerque, New Mexico 87185

 **
 ** DEPAC PACKAGE OVERVIEW **
 **

 You have a choice of three differential equation solvers from
 DEPAC. The following brief descriptions are meant to aid you
 in choosing the most appropriate code for your problem.

 DERKF is a fifth order Runge-Kutta code. It is the simplest of
 the three choices, both algorithmically and in the use of the
 code. DERKF is primarily designed to solve non-stiff and mild-
 ly stiff differential equations when derivative evaluations are
 not expensive. It should generally not be used to get high
 accuracy results nor answers at a great many specific points.
 Because DERKF has very low overhead costs, it will usually
 result in the least expensive integration when solving
 problems requiring a modest amount of accuracy and having
 equations that are not costly to evaluate. DERKF attempts to
 discover when it is not suitable for the task posed.

 DEABM is a variable order (one through twelve) Adams code.
 Its complexity lies somewhere between that of DERKF and DEBDF.
 DEABM is primarily designed to solve non-stiff and mildly stiff
 differential equations when derivative evaluations are
 expensive, high accuracy results are needed or answers at
 many specific points are required. DEABM attempts to discover
 when it is not suitable for the task posed.

 DEBDF is a variable order (one through five) backward
 differentiation formula code. It is the most complicated of
 the three choices. DEBDF is primarily designed to solve stiff

SLATEC3 (DACOSH through DS2Y) - 234

 differential equations at crude to moderate tolerances.
 If the problem is very stiff at all, DERKF and DEABM will be
 quite inefficient compared to DEBDF. However, DEBDF will be
 inefficient compared to DERKF and DEABM on non-stiff problems
 because it uses much more storage, has a much larger overhead,
 and the low order formulas will not give high accuracies
 efficiently.

 The concept of stiffness cannot be described in a few words.
 If you do not know the problem to be stiff, try either DERKF
 or DEABM. Both of these codes will inform you of stiffness
 when the cost of solving such problems becomes important.

 **
 ** ABSTRACT **

 Subroutine DEABM uses the Adams-Bashforth-Moulton predictor-
 corrector formulas of orders one through twelve to integrate a
 system of NEQ first order ordinary differential equations of the
 form
 DU/DX = F(X,U)
 when the vector Y(*) of initial values for U(*) at X=T is given. The
 subroutine integrates from T to TOUT. It is easy to continue the
 integration to get results at additional TOUT. This is the interval
 mode of operation. It is also easy for the routine to return with
 the solution at each intermediate step on the way to TOUT. This is
 the intermediate-output mode of operation.

 DEABM uses subprograms DES, STEPS, SINTRP, HSTART, HVNRM, R1MACH and
 the error handling routine XERMSG. The only machine dependent
 parameters to be assigned appear in R1MACH.

 **
 ** DESCRIPTION OF THE ARGUMENTS TO DEABM (AN OVERVIEW) **

 The parameters are

 F -- This is the name of a subroutine which you provide to
 define the differential equations.

 NEQ -- This is the number of (first order) differential
 equations to be integrated.

 T -- This is a value of the independent variable.

 Y(*) -- This array contains the solution components at T.

 TOUT -- This is a point at which a solution is desired.

 INFO(*) -- The basic task of the code is to integrate the
 differential equations from T to TOUT and return an
 answer at TOUT. INFO(*) is an integer array which is used
 to communicate exactly how you want this task to be
 carried out.

 RTOL, ATOL -- These quantities represent relative and absolute
 error tolerances which you provide to indicate how
 accurately you wish the solution to be computed. You may

SLATEC3 (DACOSH through DS2Y) - 235

 choose them to be both scalars or else both vectors.

 IDID -- This scalar quantity is an indicator reporting what
 the code did. You must monitor this integer variable to
 decide what action to take next.

 RWORK(*), LRW -- RWORK(*) is a real work array of length LRW
 which provides the code with needed storage space.

 IWORK(*), LIW -- IWORK(*) is an integer work array of length LIW
 which provides the code with needed storage space and an
 across call flag.

 RPAR, IPAR -- These are real and integer parameter arrays which
 you can use for communication between your calling
 program and the F subroutine.

 Quantities which are used as input items are
 NEQ, T, Y(*), TOUT, INFO(*),
 RTOL, ATOL, RWORK(1), LRW and LIW.

 Quantities which may be altered by the code are
 T, Y(*), INFO(1), RTOL, ATOL,
 IDID, RWORK(*) and IWORK(*).

 **
 ** INPUT -- WHAT TO DO ON THE FIRST CALL TO DEABM **
 **

 The first call of the code is defined to be the start of each new
 problem. Read through the descriptions of all the following items,
 provide sufficient storage space for designated arrays, set
 appropriate variables for the initialization of the problem, and
 give information about how you want the problem to be solved.

 F -- Provide a subroutine of the form
 F(X,U,UPRIME,RPAR,IPAR)
 to define the system of first order differential equations
 which is to be solved. For the given values of X and the
 vector U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
 evaluate the NEQ components of the system of differential
 equations DU/DX = F(X,U) and store the derivatives in
 array UPRIME(*), that is, UPRIME(I) = * DU(I)/DX * for
 equations I=1,...,NEQ.

 Subroutine F must not alter X or U(*). You must declare
 the name F in an external statement in your program that
 calls DEABM. You must dimension U and UPRIME in F.

 RPAR and IPAR are real and integer parameter arrays which
 you can use for communication between your calling program
 and subroutine F. They are not used or altered by DEABM.
 If you do not need RPAR or IPAR, ignore these parameters
 by treating them as dummy arguments. If you do choose to
 use them, dimension them in your calling program and in F
 as arrays of appropriate length.

 NEQ -- Set it to the number of differential equations.
 (NEQ .GE. 1)

SLATEC3 (DACOSH through DS2Y) - 236

 T -- Set it to the initial point of the integration.
 You must use a program variable for T because the code
 changes its value.

 Y(*) -- Set this vector to the initial values of the NEQ solution
 components at the initial point. You must dimension Y at
 least NEQ in your calling program.

 TOUT -- Set it to the first point at which a solution
 is desired. You can take TOUT = T, in which case the code
 will evaluate the derivative of the solution at T and
 return. Integration either forward in T (TOUT .GT. T)
 or backward in T (TOUT .LT. T) is permitted.

 The code advances the solution from T to TOUT using
 step sizes which are automatically selected so as to
 achieve the desired accuracy. If you wish, the code will
 return with the solution and its derivative following
 each intermediate step (intermediate-output mode) so that
 you can monitor them, but you still must provide TOUT in
 accord with the basic aim of the code.

 The first step taken by the code is a critical one
 because it must reflect how fast the solution changes near
 the initial point. The code automatically selects an
 initial step size which is practically always suitable for
 the problem. By using the fact that the code will not
 step past TOUT in the first step, you could, if necessary,
 restrict the length of the initial step size.

 For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP. When you have declared a TSTOP point (see INFO(4)
 and RWORK(1)), you have told the code not to integrate
 past TSTOP. In this case any TOUT beyond TSTOP is invalid
 input.

 INFO(*) -- Use the INFO array to give the code more details about
 how you want your problem solved. This array should be
 dimensioned of length 15 to accommodate other members of
 DEPAC or possible future extensions, though DEABM uses
 only the first four entries. You must respond to all of
 the following items which are arranged as questions. The
 simplest use of the code corresponds to answering all
 questions as YES ,i.e. setting all entries of INFO to 0.

 INFO(1) -- This parameter enables the code to initialize
 itself. You must set it to indicate the start of every
 new problem.

 **** Is this the first call for this problem ...
 YES -- Set INFO(1) = 0
 NO -- Not applicable here.
 See below for continuation calls. ****

 INFO(2) -- How much accuracy you want of your solution
 is specified by the error tolerances RTOL and ATOL.
 The simplest use is to take them both to be scalars.

SLATEC3 (DACOSH through DS2Y) - 237

 To obtain more flexibility, they can both be vectors.
 The code must be told your choice.

 **** Are both error tolerances RTOL, ATOL scalars ...
 YES -- Set INFO(2) = 0
 and input scalars for both RTOL and ATOL
 NO -- Set INFO(2) = 1
 and input arrays for both RTOL and ATOL ****

 INFO(3) -- The code integrates from T in the direction
 of TOUT by steps. If you wish, it will return the
 computed solution and derivative at the next
 intermediate step (the intermediate-output mode) or
 TOUT, whichever comes first. This is a good way to
 proceed if you want to see the behavior of the solution.
 If you must have solutions at a great many specific
 TOUT points, this code will compute them efficiently.

 **** Do you want the solution only at
 TOUT (and not at the next intermediate step) ...
 YES -- Set INFO(3) = 0
 NO -- Set INFO(3) = 1 ****

 INFO(4) -- To handle solutions at a great many specific
 values TOUT efficiently, this code may integrate past
 TOUT and interpolate to obtain the result at TOUT.
 Sometimes it is not possible to integrate beyond some
 point TSTOP because the equation changes there or it is
 not defined past TSTOP. Then you must tell the code
 not to go past.

 **** Can the integration be carried out without any
 restrictions on the independent variable T ...
 YES -- Set INFO(4)=0
 NO -- Set INFO(4)=1
 and define the stopping point TSTOP by
 setting RWORK(1)=TSTOP ****

 RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
 error tolerances to tell the code how accurately you want
 the solution to be computed. They must be defined as
 program variables because the code may change them. You
 have two choices --
 both RTOL and ATOL are scalars. (INFO(2)=0)
 both RTOL and ATOL are vectors. (INFO(2)=1)
 In either case all components must be non-negative.

 The tolerances are used by the code in a local error test
 at each step which requires roughly that
 ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
 for each vector component.
 (More specifically, a Euclidean norm is used to measure
 the size of vectors, and the error test uses the magnitude
 of the solution at the beginning of the step.)

 The true (global) error is the difference between the true
 solution of the initial value problem and the computed
 approximation. Practically all present day codes,
 including this one, control the local error at each step
 and do not even attempt to control the global error

SLATEC3 (DACOSH through DS2Y) - 238

 directly. Roughly speaking, they produce a solution Y(T)
 which satisfies the differential equations with a
 residual R(T), DY(T)/DT = F(T,Y(T)) + R(T) ,
 and, almost always, R(T) is bounded by the error
 tolerances. Usually, but not always, the true accuracy of
 the computed Y is comparable to the error tolerances. This
 code will usually, but not always, deliver a more accurate
 solution if you reduce the tolerances and integrate again.
 By comparing two such solutions you can get a fairly
 reliable idea of the true error in the solution at the
 bigger tolerances.

 Setting ATOL=0.0 results in a pure relative error test on
 that component. Setting RTOL=0.0 results in a pure abso-
 lute error test on that component. A mixed test with non-
 zero RTOL and ATOL corresponds roughly to a relative error
 test when the solution component is much bigger than ATOL
 and to an absolute error test when the solution component
 is smaller than the threshold ATOL.

 Proper selection of the absolute error control parameters
 ATOL requires you to have some idea of the scale of the
 solution components. To acquire this information may mean
 that you will have to solve the problem more than once.
 In the absence of scale information, you should ask for
 some relative accuracy in all the components (by setting
 RTOL values non-zero) and perhaps impose extremely small
 absolute error tolerances to protect against the danger of
 a solution component becoming zero.

 The code will not attempt to compute a solution at an
 accuracy unreasonable for the machine being used. It will
 advise you if you ask for too much accuracy and inform
 you as to the maximum accuracy it believes possible.

 RWORK(*) -- Dimension this real work array of length LRW in your
 calling program.

 RWORK(1) -- If you have set INFO(4)=0, you can ignore this
 optional input parameter. Otherwise you must define a
 stopping point TSTOP by setting RWORK(1) = TSTOP.
 (for some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP.)

 LRW -- Set it to the declared length of the RWORK array.
 You must have LRW .GE. 130+21*NEQ

 IWORK(*) -- Dimension this integer work array of length LIW in
 your calling program.

 LIW -- Set it to the declared length of the IWORK array.
 You must have LIW .GE. 51

 RPAR, IPAR -- These are parameter arrays, of real and integer
 type, respectively. You can use them for communication
 between your program that calls DEABM and the F
 subroutine. They are not used or altered by DEABM. If
 you do not need RPAR or IPAR, ignore these parameters by

SLATEC3 (DACOSH through DS2Y) - 239

 treating them as dummy arguments. If you do choose to use
 them, dimension them in your calling program and in F as
 arrays of appropriate length.

 **
 ** OUTPUT -- AFTER ANY RETURN FROM DEABM **

 The principal aim of the code is to return a computed solution at
 TOUT, although it is also possible to obtain intermediate results
 along the way. To find out whether the code achieved its goal
 or if the integration process was interrupted before the task was
 completed, you must check the IDID parameter.

 T -- The solution was successfully advanced to the
 output value of T.

 Y(*) -- Contains the computed solution approximation at T.
 You may also be interested in the approximate derivative
 of the solution at T. It is contained in
 RWORK(21),...,RWORK(20+NEQ).

 IDID -- Reports what the code did

 *** Task Completed ***
 reported by positive values of IDID

 IDID = 1 -- A step was successfully taken in the
 intermediate-output mode. The code has not
 yet reached TOUT.

 IDID = 2 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping exactly to TOUT.

 IDID = 3 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping past TOUT.
 Y(*) is obtained by interpolation.

 *** Task Interrupted ***
 reported by negative values of IDID

 IDID = -1 -- A large amount of work has been expended.
 (500 steps attempted)

 IDID = -2 -- The error tolerances are too stringent.

 IDID = -3 -- The local error test cannot be satisfied
 because you specified a zero component in ATOL
 and the corresponding computed solution
 component is zero. Thus, a pure relative error
 test is impossible for this component.

 IDID = -4 -- The problem appears to be stiff.

 IDID = -5,-6,-7,..,-32 -- Not applicable for this code
 but used by other members of DEPAC or possible
 future extensions.

 *** Task Terminated ***

SLATEC3 (DACOSH through DS2Y) - 240

 reported by the value of IDID=-33

 IDID = -33 -- The code has encountered trouble from which
 it cannot recover. A message is printed
 explaining the trouble and control is returned
 to the calling program. For example, this
 occurs when invalid input is detected.

 RTOL, ATOL -- These quantities remain unchanged except when
 IDID = -2. In this case, the error tolerances have been
 increased by the code to values which are estimated to be
 appropriate for continuing the integration. However, the
 reported solution at T was obtained using the input values
 of RTOL and ATOL.

 RWORK, IWORK -- Contain information which is usually of no
 interest to the user but necessary for subsequent calls.
 However, you may find use for

 RWORK(11)--Which contains the step size H to be
 attempted on the next step.

 RWORK(12)--If the tolerances have been increased by the
 code (IDID = -2) , they were multiplied by the
 value in RWORK(12).

 RWORK(13)--Which contains the current value of the
 independent variable, i.e. the farthest point
 integration has reached. This will be dif-
 ferent from T only when interpolation has been
 performed (IDID=3).

 RWORK(20+I)--Which contains the approximate derivative of
 the solution component Y(I). In DEABM, it is
 obtained by calling subroutine F to evaluate
 the differential equation using T and Y(*) when
 IDID=1 or 2, and by interpolation when IDID=3.

 **
 ** INPUT -- WHAT TO DO TO CONTINUE THE INTEGRATION **
 ** (CALLS AFTER THE FIRST) **

 This code is organized so that subsequent calls to continue the
 integration involve little (if any) additional effort on your
 part. You must monitor the IDID parameter in order to
 determine what to do next.

 Recalling that the principal task of the code is to integrate
 from T to TOUT (the interval mode), usually all you will need
 to do is specify a new TOUT upon reaching the current TOUT.

 Do not alter any quantity not specifically permitted below,
 in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
 the differential equation in subroutine F. Any such alteration
 constitutes a new problem and must be treated as such, i.e.
 you must start afresh.

 You cannot change from vector to scalar error control or vice
 versa (INFO(2)) but you can change the size of the entries of

SLATEC3 (DACOSH through DS2Y) - 241

 RTOL, ATOL. Increasing a tolerance makes the equation easier
 to integrate. Decreasing a tolerance will make the equation
 harder to integrate and should generally be avoided.

 You can switch from the intermediate-output mode to the
 interval mode (INFO(3)) or vice versa at any time.

 If it has been necessary to prevent the integration from going
 past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
 code will not integrate to any TOUT beyond the currently
 specified TSTOP. Once TSTOP has been reached you must change
 the value of TSTOP or set INFO(4)=0. You may change INFO(4)
 or TSTOP at any time but you must supply the value of TSTOP in
 RWORK(1) whenever you set INFO(4)=1.

 The parameter INFO(1) is used by the code to indicate the
 beginning of a new problem and to indicate whether integration
 is to be continued. You must input the value INFO(1) = 0
 when starting a new problem. You must input the value
 INFO(1) = 1 if you wish to continue after an interrupted task.
 Do not set INFO(1) = 0 on a continuation call unless you
 want the code to restart at the current T.

 *** Following a Completed Task ***
 If
 IDID = 1, call the code again to continue the integration
 another step in the direction of TOUT.

 IDID = 2 or 3, define a new TOUT and call the code again.
 TOUT must be different from T. You cannot change
 the direction of integration without restarting.

 *** Following an Interrupted Task ***
 To show the code that you realize the task was
 interrupted and that you want to continue, you
 must take appropriate action and reset INFO(1) = 1
 If
 IDID = -1, the code has attempted 500 steps.
 If you want to continue, set INFO(1) = 1 and
 call the code again. An additional 500 steps
 will be allowed.

 IDID = -2, the error tolerances RTOL, ATOL have been
 increased to values the code estimates appropriate
 for continuing. You may want to change them
 yourself. If you are sure you want to continue
 with relaxed error tolerances, set INFO(1)=1 and
 call the code again.

 IDID = -3, a solution component is zero and you set the
 corresponding component of ATOL to zero. If you
 are sure you want to continue, you must first
 alter the error criterion to use positive values
 for those components of ATOL corresponding to zero
 solution components, then set INFO(1)=1 and call
 the code again.

 IDID = -4, the problem appears to be stiff. It is very
 inefficient to solve such problems with DEABM. The
 code DEBDF in DEPAC handles this task efficiently.

SLATEC3 (DACOSH through DS2Y) - 242

 If you are absolutely sure you want to continue
 with DEABM, set INFO(1)=1 and call the code again.

 IDID = -5,-6,-7,..,-32 --- cannot occur with this code
 but used by other members of DEPAC or possible
 future extensions.

 *** Following a Terminated Task ***
 If
 IDID = -33, you cannot continue the solution of this
 problem. An attempt to do so will result in your
 run being terminated.

 **

 ***REFERENCES L. F. Shampine and H. A. Watts, DEPAC - design of a user
 oriented package of ODE solvers, Report SAND79-2374,
 Sandia Laboratories, 1979.
 ***ROUTINES CALLED DES, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800501 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891024 Changed references from VNORM to HVNRM. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 243

DEBDF

 SUBROUTINE DEBDF (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
 + RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC)
 ***BEGIN PROLOGUE DEBDF
 ***PURPOSE Solve an initial value problem in ordinary differential
 equations using backward differentiation formulas. It is
 intended primarily for stiff problems.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A2
 ***TYPE SINGLE PRECISION (DEBDF-S, DDEBDF-D)
 ***KEYWORDS BACKWARD DIFFERENTIATION FORMULAS, DEPAC,
 INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, STIFF
 ***AUTHOR Shampine, L. F., (SNLA)
 Watts, H. A., (SNLA)
 ***DESCRIPTION

 This is the backward differentiation code in the package of
 differential equation solvers DEPAC, consisting of the codes
 DERKF, DEABM, and DEBDF. Design of the package was by
 L. F. Shampine and H. A. Watts. It is documented in
 SAND-79-2374 , DEPAC - Design of a User Oriented Package of ODE
 Solvers.
 DEBDF is a driver for a modification of the code LSODE written by
 A. C. Hindmarsh
 Lawrence Livermore Laboratory
 Livermore, California 94550

 **
 ** DEPAC PACKAGE OVERVIEW **
 **

 You have a choice of three differential equation solvers from
 DEPAC. The following brief descriptions are meant to aid you
 in choosing the most appropriate code for your problem.

 DERKF is a fifth order Runge-Kutta code. It is the simplest of
 the three choices, both algorithmically and in the use of the
 code. DERKF is primarily designed to solve non-stiff and mild-
 ly stiff differential equations when derivative evaluations are
 not expensive. It should generally not be used to get high
 accuracy results nor answers at a great many specific points.
 Because DERKF has very low overhead costs, it will usually
 result in the least expensive integration when solving
 problems requiring a modest amount of accuracy and having
 equations that are not costly to evaluate. DERKF attempts to
 discover when it is not suitable for the task posed.

 DEABM is a variable order (one through twelve) Adams code.
 Its complexity lies somewhere between that of DERKF and DEBDF.
 DEABM is primarily designed to solve non-stiff and mildly
 stiff differential equations when derivative evaluations are
 expensive, high accuracy results are needed or answers at
 many specific points are required. DEABM attempts to discover
 when it is not suitable for the task posed.

 DEBDF is a variable order (one through five) backward

SLATEC3 (DACOSH through DS2Y) - 244

 differentiation formula code. It is the most complicated of
 the three choices. DEBDF is primarily designed to solve stiff
 differential equations at crude to moderate tolerances.
 If the problem is very stiff at all, DERKF and DEABM will be
 quite inefficient compared to DEBDF. However, DEBDF will be
 inefficient compared to DERKF and DEABM on non-stiff problems
 because it uses much more storage, has a much larger overhead,
 and the low order formulas will not give high accuracies
 efficiently.

 The concept of stiffness cannot be described in a few words.
 If you do not know the problem to be stiff, try either DERKF
 or DEABM. Both of these codes will inform you of stiffness
 when the cost of solving such problems becomes important.

 **
 ** ABSTRACT **
 **

 Subroutine DEBDF uses the backward differentiation formulas of
 orders one through five to integrate a system of NEQ first order
 ordinary differential equations of the form
 DU/DX = F(X,U)
 when the vector Y(*) of initial values for U(*) at X=T is given. The
 subroutine integrates from T to TOUT. It is easy to continue the
 integration to get results at additional TOUT. This is the interval
 mode of operation. It is also easy for the routine to return with
 The solution at each intermediate step on the way to TOUT. This is
 the intermediate-output mode of operation.

 **
 ** DESCRIPTION OF THE ARGUMENTS TO DEBDF (AN OVERVIEW) **
 **

 The Parameters are:

 F -- This is the name of a subroutine which you provide to
 define the differential equations.

 NEQ -- This is the number of (first order) differential
 equations to be integrated.

 T -- This is a value of the independent variable.

 Y(*) -- This array contains the solution components at T.

 TOUT -- This is a point at which a solution is desired.

 INFO(*) -- The basic task of the code is to integrate the
 differential equations from T to TOUT and return an
 answer at TOUT. INFO(*) is an INTEGER array which is used
 to communicate exactly how you want this task to be
 carried out.

 RTOL, ATOL -- These quantities
 represent relative and absolute error tolerances which you
 provide to indicate how accurately you wish the solution
 to be computed. You may choose them to be both scalars
 or else both vectors.

SLATEC3 (DACOSH through DS2Y) - 245

 IDID -- This scalar quantity is an indicator reporting what
 the code did. You must monitor this INTEGER variable to
 decide what action to take next.

 RWORK(*), LRW -- RWORK(*) is a REAL work array of
 length LRW which provides the code with needed storage
 space.

 IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
 which provides the code with needed storage space and an
 across call flag.

 RPAR, IPAR -- These are REAL and INTEGER parameter
 arrays which you can use for communication between your
 calling program and the F subroutine (and the JAC
 subroutine).

 JAC -- This is the name of a subroutine which you may choose to
 provide for defining the Jacobian matrix of partial
 derivatives DF/DU.

 Quantities which are used as input items are
 NEQ, T, Y(*), TOUT, INFO(*),
 RTOL, ATOL, RWORK(1), LRW,
 IWORK(1), IWORK(2), and LIW.

 Quantities which may be altered by the code are
 T, Y(*), INFO(1), RTOL, ATOL,
 IDID, RWORK(*) and IWORK(*).

 **
 * INPUT -- What To Do On The First Call To DEBDF *
 **

 The first call of the code is defined to be the start of each new
 problem. Read through the descriptions of all the following items,
 provide sufficient storage space for designated arrays, set
 appropriate variables for the initialization of the problem, and
 give information about how you want the problem to be solved.

 F -- provide a subroutine of the form
 F(X,U,UPRIME,RPAR,IPAR)
 to define the system of first order differential equations
 which is to be solved. For the given values of X and the
 vector U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
 evaluate the NEQ components of the system of differential
 equations DU/DX=F(X,U) and store the derivatives in the
 array UPRIME(*), that is, UPRIME(I) = * DU(I)/DX * for
 equations I=1,...,NEQ.

 Subroutine F must not alter X or U(*). You must declare
 the name F in an external statement in your program that
 calls DEBDF. You must dimension U and UPRIME in F.

 RPAR and IPAR are REAL and INTEGER parameter arrays which
 you can use for communication between your calling program
 and subroutine F. They are not used or altered by DEBDF.
 If you do not need RPAR or IPAR, ignore these parameters
 by treating them as dummy arguments. If you do choose to

SLATEC3 (DACOSH through DS2Y) - 246

 use them, dimension them in your calling program and in F
 as arrays of appropriate length.

 NEQ -- Set it to the number of differential equations.
 (NEQ .GE. 1)

 T -- Set it to the initial point of the integration.
 You must use a program variable for T because the code
 changes its value.

 Y(*) -- Set this vector to the initial values of the NEQ solution
 components at the initial point. You must dimension Y at
 least NEQ in your calling program.

 TOUT -- Set it to the first point at which a solution is desired.
 You can take TOUT = T, in which case the code
 will evaluate the derivative of the solution at T and
 return. Integration either forward in T (TOUT .GT. T)
 or backward in T (TOUT .LT. T) is permitted.

 The code advances the solution from T to TOUT using
 step sizes which are automatically selected so as to
 achieve the desired accuracy. If you wish, the code will
 return with the solution and its derivative following
 each intermediate step (intermediate-output mode) so that
 you can monitor them, but you still must provide TOUT in
 accord with the basic aim of the code.

 The first step taken by the code is a critical one
 because it must reflect how fast the solution changes near
 the initial point. The code automatically selects an
 initial step size which is practically always suitable for
 the problem. By using the fact that the code will not
 step past TOUT in the first step, you could, if necessary,
 restrict the length of the initial step size.

 For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP. When you have declared a TSTOP point (see INFO(4)
 and RWORK(1)), you have told the code not to integrate
 past TSTOP. In this case any TOUT beyond TSTOP is invalid
 input.

 INFO(*) -- Use the INFO array to give the code more details about
 how you want your problem solved. This array should be
 dimensioned of length 15 to accommodate other members of
 DEPAC or possible future extensions, though DEBDF uses
 only the first six entries. You must respond to all of
 the following items which are arranged as questions. The
 simplest use of the code corresponds to answering all
 questions as YES ,i.e. setting all entries of INFO to 0.

 INFO(1) -- This parameter enables the code to initialize
 itself. You must set it to indicate the start of every
 new problem.

 **** Is this the first call for this problem ...
 YES -- Set INFO(1) = 0
 NO -- Not applicable here.

SLATEC3 (DACOSH through DS2Y) - 247

 See below for continuation calls. ****

 INFO(2) -- How much accuracy you want of your solution
 is specified by the error tolerances RTOL and ATOL.
 The simplest use is to take them both to be scalars.
 To obtain more flexibility, they can both be vectors.
 The code must be told your choice.

 **** Are both error tolerances RTOL, ATOL scalars ...
 YES -- Set INFO(2) = 0
 and input scalars for both RTOL and ATOL
 NO -- Set INFO(2) = 1
 and input arrays for both RTOL and ATOL ****

 INFO(3) -- The code integrates from T in the direction
 of TOUT by steps. If you wish, it will return the
 computed solution and derivative at the next
 intermediate step (the intermediate-output mode) or
 TOUT, whichever comes first. This is a good way to
 proceed if you want to see the behavior of the solution.
 If you must have solutions at a great many specific
 TOUT points, this code will compute them efficiently.

 **** Do you want the solution only at
 TOUT (and NOT at the next intermediate step) ...
 YES -- Set INFO(3) = 0
 NO -- Set INFO(3) = 1 ****

 INFO(4) -- To handle solutions at a great many specific
 values TOUT efficiently, this code may integrate past
 TOUT and interpolate to obtain the result at TOUT.
 Sometimes it is not possible to integrate beyond some
 point TSTOP because the equation changes there or it is
 not defined past TSTOP. Then you must tell the code
 not to go past.

 **** Can the integration be carried out without any
 restrictions on the independent variable T ...
 YES -- Set INFO(4)=0
 NO -- Set INFO(4)=1
 and define the stopping point TSTOP by
 setting RWORK(1)=TSTOP ****

 INFO(5) -- To solve stiff problems it is necessary to use the
 Jacobian matrix of partial derivatives of the system
 of differential equations. If you do not provide a
 subroutine to evaluate it analytically (see the
 description of the item JAC in the call list), it will
 be approximated by numerical differencing in this code.
 Although it is less trouble for you to have the code
 compute partial derivatives by numerical differencing,
 the solution will be more reliable if you provide the
 derivatives via JAC. Sometimes numerical differencing
 is cheaper than evaluating derivatives in JAC and
 sometimes it is not - this depends on your problem.

 If your problem is linear, i.e. has the form
 DU/DX = F(X,U) = J(X)*U + G(X) for some matrix J(X)
 and vector G(X), the Jacobian matrix DF/DU = J(X).
 Since you must provide a subroutine to evaluate F(X,U)

SLATEC3 (DACOSH through DS2Y) - 248

 analytically, it is little extra trouble to provide
 subroutine JAC for evaluating J(X) analytically.
 Furthermore, in such cases, numerical differencing is
 much more expensive than analytic evaluation.

 **** Do you want the code to evaluate the partial
 derivatives automatically by numerical differences ...
 YES -- Set INFO(5)=0
 NO -- Set INFO(5)=1
 and provide subroutine JAC for evaluating the
 Jacobian matrix ****

 INFO(6) -- DEBDF will perform much better if the Jacobian
 matrix is banded and the code is told this. In this
 case, the storage needed will be greatly reduced,
 numerical differencing will be performed more cheaply,
 and a number of important algorithms will execute much
 faster. The differential equation is said to have
 half-bandwidths ML (lower) and MU (upper) if equation I
 involves only unknowns Y(J) with
 I-ML .LE. J .LE. I+MU
 for all I=1,2,...,NEQ. Thus, ML and MU are the widths
 of the lower and upper parts of the band, respectively,
 with the main diagonal being excluded. If you do not
 indicate that the equation has a banded Jacobian,
 the code works with a full matrix of NEQ**2 elements
 (stored in the conventional way). Computations with
 banded matrices cost less time and storage than with
 full matrices if 2*ML+MU .LT. NEQ. If you tell the
 code that the Jacobian matrix has a banded structure and
 you want to provide subroutine JAC to compute the
 partial derivatives, then you must be careful to store
 the elements of the Jacobian matrix in the special form
 indicated in the description of JAC.

 **** Do you want to solve the problem using a full
 (dense) Jacobian matrix (and not a special banded
 structure) ...
 YES -- Set INFO(6)=0
 NO -- Set INFO(6)=1
 and provide the lower (ML) and upper (MU)
 bandwidths by setting
 IWORK(1)=ML
 IWORK(2)=MU ****

 RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
 error tolerances to tell the code how accurately you want
 the solution to be computed. They must be defined as
 program variables because the code may change them. You
 have two choices --
 Both RTOL and ATOL are scalars. (INFO(2)=0)
 Both RTOL and ATOL are vectors. (INFO(2)=1)
 In either case all components must be non-negative.

 The tolerances are used by the code in a local error test
 at each step which requires roughly that
 ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
 for each vector component.
 (More specifically, a root-mean-square norm is used to
 measure the size of vectors, and the error test uses the

SLATEC3 (DACOSH through DS2Y) - 249

 magnitude of the solution at the beginning of the step.)

 The true (global) error is the difference between the true
 solution of the initial value problem and the computed
 approximation. Practically all present day codes,
 including this one, control the local error at each step
 and do not even attempt to control the global error
 directly. Roughly speaking, they produce a solution Y(T)
 which satisfies the differential equations with a
 residual R(T), DY(T)/DT = F(T,Y(T)) + R(T) ,
 and, almost always, R(T) is bounded by the error
 tolerances. Usually, but not always, the true accuracy of
 the computed Y is comparable to the error tolerances. This
 code will usually, but not always, deliver a more accurate
 solution if you reduce the tolerances and integrate again.
 By comparing two such solutions you can get a fairly
 reliable idea of the true error in the solution at the
 bigger tolerances.

 Setting ATOL=0. results in a pure relative error test on
 that component. Setting RTOL=0. results in a pure abso-
 lute error test on that component. A mixed test with non-
 zero RTOL and ATOL corresponds roughly to a relative error
 test when the solution component is much bigger than ATOL
 and to an absolute error test when the solution component
 is smaller than the threshold ATOL.

 Proper selection of the absolute error control parameters
 ATOL requires you to have some idea of the scale of the
 solution components. To acquire this information may mean
 that you will have to solve the problem more than once. In
 the absence of scale information, you should ask for some
 relative accuracy in all the components (by setting RTOL
 values non-zero) and perhaps impose extremely small
 absolute error tolerances to protect against the danger of
 a solution component becoming zero.

 The code will not attempt to compute a solution at an
 accuracy unreasonable for the machine being used. It will
 advise you if you ask for too much accuracy and inform
 you as to the maximum accuracy it believes possible.

 RWORK(*) -- Dimension this REAL work array of length LRW in your
 calling program.

 RWORK(1) -- If you have set INFO(4)=0, you can ignore this
 optional input parameter. Otherwise you must define a
 stopping point TSTOP by setting RWORK(1) = TSTOP.
 (For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP.)

 LRW -- Set it to the declared length of the RWORK array.
 You must have
 LRW .GE. 250+10*NEQ+NEQ**2
 for the full (dense) Jacobian case (when INFO(6)=0), or
 LRW .GE. 250+10*NEQ+(2*ML+MU+1)*NEQ
 for the banded Jacobian case (when INFO(6)=1).

SLATEC3 (DACOSH through DS2Y) - 250

 IWORK(*) -- Dimension this INTEGER work array of length LIW in
 your calling program.

 IWORK(1), IWORK(2) -- If you have set INFO(6)=0, you can ignore
 these optional input parameters. Otherwise you must define
 the half-bandwidths ML (lower) and MU (upper) of the
 Jacobian matrix by setting IWORK(1) = ML and
 IWORK(2) = MU. (The code will work with a full matrix
 of NEQ**2 elements unless it is told that the problem has
 a banded Jacobian, in which case the code will work with
 a matrix containing at most (2*ML+MU+1)*NEQ elements.)

 LIW -- Set it to the declared length of the IWORK array.
 You must have LIW .GE. 56+NEQ.

 RPAR, IPAR -- These are parameter arrays, of REAL and INTEGER
 type, respectively. You can use them for communication
 between your program that calls DEBDF and the F
 subroutine (and the JAC subroutine). They are not used or
 altered by DEBDF. If you do not need RPAR or IPAR, ignore
 these parameters by treating them as dummy arguments. If
 you do choose to use them, dimension them in your calling
 program and in F (and in JAC) as arrays of appropriate
 length.

 JAC -- If you have set INFO(5)=0, you can ignore this parameter
 by treating it as a dummy argument. (For some compilers
 you may have to write a dummy subroutine named JAC in
 order to avoid problems associated with missing external
 routine names.) Otherwise, you must provide a subroutine
 of the form
 JAC(X,U,PD,NROWPD,RPAR,IPAR)
 to define the Jacobian matrix of partial derivatives DF/DU
 of the system of differential equations DU/DX = F(X,U).
 For the given values of X and the vector
 U(*)=(U(1),U(2),...,U(NEQ)), the subroutine must evaluate
 the non-zero partial derivatives DF(I)/DU(J) for each
 differential equation I=1,...,NEQ and each solution
 component J=1,...,NEQ , and store these values in the
 matrix PD. The elements of PD are set to zero before each
 call to JAC so only non-zero elements need to be defined.

 Subroutine JAC must not alter X, U(*), or NROWPD. You
 must declare the name JAC in an EXTERNAL statement in your
 program that calls DEBDF. NROWPD is the row dimension of
 the PD matrix and is assigned by the code. Therefore you
 must dimension PD in JAC according to
 DIMENSION PD(NROWPD,1)
 You must also dimension U in JAC.

 The way you must store the elements into the PD matrix
 depends on the structure of the Jacobian which you
 indicated by INFO(6).
 *** INFO(6)=0 -- Full (Dense) Jacobian ***
 When you evaluate the (non-zero) partial derivative
 of equation I with respect to variable J, you must
 store it in PD according to
 PD(I,J) = * DF(I)/DU(J) *
 *** INFO(6)=1 -- Banded Jacobian with ML Lower and MU
 Upper Diagonal Bands (refer to INFO(6) description of

SLATEC3 (DACOSH through DS2Y) - 251

 ML and MU) ***
 When you evaluate the (non-zero) partial derivative
 of equation I with respect to variable J, you must
 store it in PD according to
 IROW = I - J + ML + MU + 1
 PD(IROW,J) = * DF(I)/DU(J) *

 RPAR and IPAR are REAL and INTEGER parameter
 arrays which you can use for communication between your
 calling program and your Jacobian subroutine JAC. They
 are not altered by DEBDF. If you do not need RPAR or
 IPAR, ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension them
 in your calling program and in JAC as arrays of
 appropriate length.

 **
 * OUTPUT -- After any return from DDEBDF *
 **

 The principal aim of the code is to return a computed solution at
 TOUT, although it is also possible to obtain intermediate results
 along the way. To find out whether the code achieved its goal
 or if the integration process was interrupted before the task was
 completed, you must check the IDID parameter.

 T -- The solution was successfully advanced to the
 output value of T.

 Y(*) -- Contains the computed solution approximation at T.
 You may also be interested in the approximate derivative
 of the solution at T. It is contained in
 RWORK(21),...,RWORK(20+NEQ).

 IDID -- Reports what the code did

 *** Task Completed ***
 Reported by positive values of IDID

 IDID = 1 -- A step was successfully taken in the
 intermediate-output mode. The code has not
 yet reached TOUT.

 IDID = 2 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping exactly to TOUT.

 IDID = 3 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping past TOUT.
 Y(*) is obtained by interpolation.

 *** Task Interrupted ***
 Reported by negative values of IDID

 IDID = -1 -- A large amount of work has been expended.
 (500 steps attempted)

 IDID = -2 -- The error tolerances are too stringent.

 IDID = -3 -- The local error test cannot be satisfied

SLATEC3 (DACOSH through DS2Y) - 252

 because you specified a zero component in ATOL
 and the corresponding computed solution
 component is zero. Thus, a pure relative error
 test is impossible for this component.

 IDID = -4,-5 -- Not applicable for this code but used
 by other members of DEPAC.

 IDID = -6 -- DEBDF had repeated convergence test failures
 on the last attempted step.

 IDID = -7 -- DEBDF had repeated error test failures on
 the last attempted step.

 IDID = -8,..,-32 -- Not applicable for this code but
 used by other members of DEPAC or possible
 future extensions.

 *** Task Terminated ***
 Reported by the value of IDID=-33

 IDID = -33 -- The code has encountered trouble from which
 it cannot recover. A message is printed
 explaining the trouble and control is returned
 to the calling program. For example, this
 occurs when invalid input is detected.

 RTOL, ATOL -- These quantities remain unchanged except when
 IDID = -2. In this case, the error tolerances have been
 increased by the code to values which are estimated to be
 appropriate for continuing the integration. However, the
 reported solution at T was obtained using the input values
 of RTOL and ATOL.

 RWORK, IWORK -- Contain information which is usually of no
 interest to the user but necessary for subsequent calls.
 However, you may find use for

 RWORK(11)--which contains the step size H to be
 attempted on the next step.

 RWORK(12)--If the tolerances have been increased by the
 code (IDID = -2) , they were multiplied by the
 value in RWORK(12).

 RWORK(13)--which contains the current value of the
 independent variable, i.e. the farthest point
 integration has reached. This will be
 different from T only when interpolation has
 been performed (IDID=3).

 RWORK(20+I)--which contains the approximate derivative
 of the solution component Y(I). In DEBDF, it
 is never obtained by calling subroutine F to
 evaluate the differential equation using T and
 Y(*), except at the initial point of
 integration.

 **
 ** INPUT -- What To Do To Continue The Integration **

SLATEC3 (DACOSH through DS2Y) - 253

 ** (calls after the first) **
 **

 This code is organized so that subsequent calls to continue the
 integration involve little (if any) additional effort on your
 part. You must monitor the IDID parameter in order to determine
 what to do next.

 Recalling that the principal task of the code is to integrate
 from T to TOUT (the interval mode), usually all you will need
 to do is specify a new TOUT upon reaching the current TOUT.

 Do not alter any quantity not specifically permitted below,
 in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
 the differential equation in subroutine F. Any such alteration
 constitutes a new problem and must be treated as such, i.e.
 you must start afresh.

 You cannot change from vector to scalar error control or vice
 versa (INFO(2)) but you can change the size of the entries of
 RTOL, ATOL. Increasing a tolerance makes the equation easier
 to integrate. Decreasing a tolerance will make the equation
 harder to integrate and should generally be avoided.

 You can switch from the intermediate-output mode to the
 interval mode (INFO(3)) or vice versa at any time.

 If it has been necessary to prevent the integration from going
 past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
 code will not integrate to any TOUT beyond the currently
 specified TSTOP. Once TSTOP has been reached you must change
 the value of TSTOP or set INFO(4)=0. You may change INFO(4)
 or TSTOP at any time but you must supply the value of TSTOP in
 RWORK(1) whenever you set INFO(4)=1.

 Do not change INFO(5), INFO(6), IWORK(1), or IWORK(2)
 unless you are going to restart the code.

 The parameter INFO(1) is used by the code to indicate the
 beginning of a new problem and to indicate whether integration
 is to be continued. You must input the value INFO(1) = 0
 when starting a new problem. You must input the value
 INFO(1) = 1 if you wish to continue after an interrupted task.
 Do not set INFO(1) = 0 on a continuation call unless you
 want the code to restart at the current T.

 *** Following a Completed Task ***
 If
 IDID = 1, call the code again to continue the integration
 another step in the direction of TOUT.

 IDID = 2 or 3, define a new TOUT and call the code again.
 TOUT must be different from T. You cannot change
 the direction of integration without restarting.

 *** Following an Interrupted Task ***
 To show the code that you realize the task was
 interrupted and that you want to continue, you
 must take appropriate action and reset INFO(1) = 1
 If

SLATEC3 (DACOSH through DS2Y) - 254

 IDID = -1, the code has attempted 500 steps.
 If you want to continue, set INFO(1) = 1 and
 call the code again. An additional 500 steps
 will be allowed.

 IDID = -2, the error tolerances RTOL, ATOL have been
 increased to values the code estimates appropriate
 for continuing. You may want to change them
 yourself. If you are sure you want to continue
 with relaxed error tolerances, set INFO(1)=1 and
 call the code again.

 IDID = -3, a solution component is zero and you set the
 corresponding component of ATOL to zero. If you
 are sure you want to continue, you must first
 alter the error criterion to use positive values
 for those components of ATOL corresponding to zero
 solution components, then set INFO(1)=1 and call
 the code again.

 IDID = -4,-5 --- cannot occur with this code but used
 by other members of DEPAC.

 IDID = -6, repeated convergence test failures occurred
 on the last attempted step in DEBDF. An inaccu-
 rate Jacobian may be the problem. If you are
 absolutely certain you want to continue, restart
 the integration at the current T by setting
 INFO(1)=0 and call the code again.

 IDID = -7, repeated error test failures occurred on the
 last attempted step in DEBDF. A singularity in
 the solution may be present. You should re-
 examine the problem being solved. If you are
 absolutely certain you want to continue, restart
 the integration at the current T by setting
 INFO(1)=0 and call the code again.

 IDID = -8,..,-32 --- cannot occur with this code but
 used by other members of DEPAC or possible future
 extensions.

 *** Following a Terminated Task ***
 If
 IDID = -33, you cannot continue the solution of this
 problem. An attempt to do so will result in your
 run being terminated.

 **

 ***** Warning *****

 If DEBDF is to be used in an overlay situation, you must save and
 restore certain items used internally by DEBDF (values in the
 common block DEBDF1). This can be accomplished as follows.

 To save the necessary values upon return from DEBDF, simply call
 SVCO(RWORK(22+NEQ),IWORK(21+NEQ)).

 To restore the necessary values before the next call to DEBDF,

SLATEC3 (DACOSH through DS2Y) - 255

 simply call RSCO(RWORK(22+NEQ),IWORK(21+NEQ)).

 ***REFERENCES L. F. Shampine and H. A. Watts, DEPAC - design of a user
 oriented package of ODE solvers, Report SAND79-2374,
 Sandia Laboratories, 1979.
 ***ROUTINES CALLED LSOD, XERMSG
 ***COMMON BLOCKS DEBDF1
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891024 Changed references from VNORM to HVNRM. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Convert XERRWV calls to XERMSG calls, change Prologue
 comments to agree with DDEBDF. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 256

DEFC

 SUBROUTINE DEFC (NDATA, XDATA, YDATA, SDDATA, NORD, NBKPT, BKPT,
 + MDEIN, MDEOUT, COEFF, LW, W)
 ***BEGIN PROLOGUE DEFC
 ***PURPOSE Fit a piecewise polynomial curve to discrete data.
 The piecewise polynomials are represented as B-splines.
 The fitting is done in a weighted least squares sense.
 ***LIBRARY SLATEC
 ***CATEGORY K1A1A1, K1A2A, L8A3
 ***TYPE DOUBLE PRECISION (EFC-S, DEFC-D)
 ***KEYWORDS B-SPLINE, CONSTRAINED LEAST SQUARES, CURVE FITTING
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 This subprogram fits a piecewise polynomial curve
 to discrete data. The piecewise polynomials are
 represented as B-splines.
 The fitting is done in a weighted least squares sense.

 The data can be processed in groups of modest size.
 The size of the group is chosen by the user. This feature
 may be necessary for purposes of using constrained curve fitting
 with subprogram DFC() on a very large data set.

 For a description of the B-splines and usage instructions to
 evaluate them, see

 C. W. de Boor, Package for Calculating with B-Splines.
 SIAM J. Numer. Anal., p. 441, (June, 1977).

 For further discussion of (constrained) curve fitting using
 B-splines, see

 R. J. Hanson, Constrained Least Squares Curve Fitting
 to Discrete Data Using B-Splines, a User's
 Guide. Sandia Labs. Tech. Rept. SAND-78-1291,
 December, (1978).

 Input.. All TYPE REAL variables are DOUBLE PRECISION
 NDATA,XDATA(*),
 YDATA(*),
 SDDATA(*)
 The NDATA discrete (X,Y) pairs and the Y value
 standard deviation or uncertainty, SD, are in
 the respective arrays XDATA(*), YDATA(*), and
 SDDATA(*). No sorting of XDATA(*) is
 required. Any non-negative value of NDATA is
 allowed. A negative value of NDATA is an
 error. A zero value for any entry of
 SDDATA(*) will weight that data point as 1.
 Otherwise the weight of that data point is
 the reciprocal of this entry.

 NORD,NBKPT,
 BKPT(*)
 The NBKPT knots of the B-spline of order NORD
 are in the array BKPT(*). Normally the

SLATEC3 (DACOSH through DS2Y) - 257

 problem data interval will be included between
 the limits BKPT(NORD) and BKPT(NBKPT-NORD+1).
 The additional end knots BKPT(I),I=1,...,
 NORD-1 and I=NBKPT-NORD+2,...,NBKPT, are
 required to compute the functions used to fit
 the data. No sorting of BKPT(*) is required.
 Internal to DEFC() the extreme end knots may
 be reduced and increased respectively to
 accommodate any data values that are exterior
 to the given knot values. The contents of
 BKPT(*) is not changed.

 NORD must be in the range 1 .LE. NORD .LE. 20.
 The value of NBKPT must satisfy the condition
 NBKPT .GE. 2*NORD.
 Other values are considered errors.

 (The order of the spline is one more than the
 degree of the piecewise polynomial defined on
 each interval. This is consistent with the
 B-spline package convention. For example,
 NORD=4 when we are using piecewise cubics.)

 MDEIN
 An integer flag, with one of two possible
 values (1 or 2), that directs the subprogram
 action with regard to new data points provided
 by the user.

 =1 The first time that DEFC() has been
 entered. There are NDATA points to process.

 =2 This is another entry to DEFC(). The sub-
 program DEFC() has been entered with MDEIN=1
 exactly once before for this problem. There
 are NDATA new additional points to merge and
 process with any previous points.
 (When using DEFC() with MDEIN=2 it is import-
 ant that the set of knots remain fixed at the
 same values for all entries to DEFC().)
 LW
 The amount of working storage actually
 allocated for the working array W(*).
 This quantity is compared with the
 actual amount of storage needed in DEFC().
 Insufficient storage allocated for W(*) is
 an error. This feature was included in DEFC
 because misreading the storage formula
 for W(*) might very well lead to subtle
 and hard-to-find programming bugs.

 The length of the array W(*) must satisfy

 LW .GE. (NBKPT-NORD+3)*(NORD+1)+
 (NBKPT+1)*(NORD+1)+
 2*MAX(NDATA,NBKPT)+NBKPT+NORD**2

 Output.. All TYPE REAL variables are DOUBLE PRECISION
 MDEOUT
 An output flag that indicates the status

SLATEC3 (DACOSH through DS2Y) - 258

 of the curve fit.

 =-1 A usage error of DEFC() occurred. The
 offending condition is noted with the SLATEC
 library error processor, XERMSG(). In case
 the working array W(*) is not long enough, the
 minimal acceptable length is printed.

 =1 The B-spline coefficients for the fitted
 curve have been returned in array COEFF(*).

 =2 Not enough data has been processed to
 determine the B-spline coefficients.
 The user has one of two options. Continue
 to process more data until a unique set
 of coefficients is obtained, or use the
 subprogram DFC() to obtain a specific
 set of coefficients. The user should read
 the usage instructions for DFC() for further
 details if this second option is chosen.
 COEFF(*)
 If the output value of MDEOUT=1, this array
 contains the unknowns obtained from the least
 squares fitting process. These N=NBKPT-NORD
 parameters are the B-spline coefficients.
 For MDEOUT=2, not enough data was processed to
 uniquely determine the B-spline coefficients.
 In this case, and also when MDEOUT=-1, all
 values of COEFF(*) are set to zero.

 If the user is not satisfied with the fitted
 curve returned by DEFC(), the constrained
 least squares curve fitting subprogram DFC()
 may be required. The work done within DEFC()
 to accumulate the data can be utilized by
 the user, if so desired. This involves
 saving the first (NBKPT-NORD+3)*(NORD+1)
 entries of W(*) and providing this data
 to DFC() with the "old problem" designation.
 The user should read the usage instructions
 for subprogram DFC() for further details.

 Working Array.. All TYPE REAL variables are DOUBLE PRECISION
 W(*)
 This array is typed DOUBLE PRECISION.
 Its length is specified as an input parameter
 in LW as noted above. The contents of W(*)
 must not be modified by the user between calls
 to DEFC() with values of MDEIN=1,2,2,... .
 The first (NBKPT-NORD+3)*(NORD+1) entries of
 W(*) are acceptable as direct input to DFC()
 for an "old problem" only when MDEOUT=1 or 2.

 Evaluating the
 Fitted Curve..
 To evaluate derivative number IDER at XVAL,
 use the function subprogram DBVALU().

 F = DBVALU(BKPT,COEFF,NBKPT-NORD,NORD,IDER,
 XVAL,INBV,WORKB)

SLATEC3 (DACOSH through DS2Y) - 259

 The output of this subprogram will not be
 defined unless an output value of MDEOUT=1
 was obtained from DEFC(), XVAL is in the data
 interval, and IDER is nonnegative and .LT.
 NORD.

 The first time DBVALU() is called, INBV=1
 must be specified. This value of INBV is the
 overwritten by DBVALU(). The array WORKB(*)
 must be of length at least 3*NORD, and must
 not be the same as the W(*) array used in the
 call to DEFC().

 DBVALU() expects the breakpoint array BKPT(*)
 to be sorted.

 ***REFERENCES R. J. Hanson, Constrained least squares curve fitting
 to discrete data using B-splines, a users guide,
 Report SAND78-1291, Sandia Laboratories, December
 1978.
 ***ROUTINES CALLED DEFCMN
 ***REVISION HISTORY (YYMMDD)
 800801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Change Prologue comments to refer to XERMSG. (RWC)
 900607 Editorial changes to Prologue to make Prologues for EFC,
 DEFC, FC, and DFC look as much the same as possible. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 260

DEI

 DOUBLE PRECISION FUNCTION DEI (X)
 ***BEGIN PROLOGUE DEI
 ***PURPOSE Compute the exponential integral Ei(X).
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C5
 ***TYPE DOUBLE PRECISION (EI-S, DEI-D)
 ***KEYWORDS EI FUNCTION, EXPONENTIAL INTEGRAL, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DEI calculates the double precision exponential integral, Ei(X), for
 positive double precision argument X and the Cauchy principal value
 for negative X. If principal values are used everywhere, then, for
 all X,

 Ei(X) = -E1(-X)
 or
 E1(X) = -Ei(-X).

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DE1
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 891115 Modified prologue description. (WRB)
 891115 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 261

DERF

 DOUBLE PRECISION FUNCTION DERF (X)
 ***BEGIN PROLOGUE DERF
 ***PURPOSE Compute the error function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C8A, L5A1E
 ***TYPE DOUBLE PRECISION (ERF-S, DERF-D)
 ***KEYWORDS ERF, ERROR FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DERF(X) calculates the double precision error function for double
 precision argument X.

 Series for ERF on the interval 0. to 1.00000E+00
 with weighted error 1.28E-32
 log weighted error 31.89
 significant figures required 31.05
 decimal places required 32.55

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, DERFC, INITDS
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900727 Added EXTERNAL statement. (WRB)
 920618 Removed space from variable name. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 262

DERFC

 DOUBLE PRECISION FUNCTION DERFC (X)
 ***BEGIN PROLOGUE DERFC
 ***PURPOSE Compute the complementary error function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C8A, L5A1E
 ***TYPE DOUBLE PRECISION (ERFC-S, DERFC-D)
 ***KEYWORDS COMPLEMENTARY ERROR FUNCTION, ERFC, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DERFC(X) calculates the double precision complementary error function
 for double precision argument X.

 Series for ERF on the interval 0. to 1.00000E+00
 with weighted Error 1.28E-32
 log weighted Error 31.89
 significant figures required 31.05
 decimal places required 32.55

 Series for ERC2 on the interval 2.50000E-01 to 1.00000E+00
 with weighted Error 2.67E-32
 log weighted Error 31.57
 significant figures required 30.31
 decimal places required 32.42

 Series for ERFC on the interval 0. to 2.50000E-01
 with weighted error 1.53E-31
 log weighted error 30.82
 significant figures required 29.47
 decimal places required 31.70

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 263

DERKF

 SUBROUTINE DERKF (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID,
 + RWORK, LRW, IWORK, LIW, RPAR, IPAR)
 ***BEGIN PROLOGUE DERKF
 ***PURPOSE Solve an initial value problem in ordinary differential
 equations using a Runge-Kutta-Fehlberg scheme.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A1A
 ***TYPE SINGLE PRECISION (DERKF-S, DDERKF-D)
 ***KEYWORDS DEPAC, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, RKF,
 RUNGE-KUTTA-FEHLBERG METHODS
 ***AUTHOR Watts, H. A., (SNLA)
 Shampine, L. F., (SNLA)
 ***DESCRIPTION

 This is the Runge-Kutta code in the package of differential equation
 solvers DEPAC, consisting of the codes DERKF, DEABM, and DEBDF.
 Design of the package was by L. F. Shampine and H. A. Watts.
 It is documented in
 SAND-79-2374 , DEPAC - Design of a User Oriented Package of ODE
 Solvers.
 DERKF is a driver for a modification of the code RKF45 written by
 H. A. Watts and L. F. Shampine
 Sandia Laboratories
 Albuquerque, New Mexico 87185

 **
 ** DEPAC PACKAGE OVERVIEW **
 **

 You have a choice of three differential equation solvers from
 DEPAC. The following brief descriptions are meant to aid you
 in choosing the most appropriate code for your problem.

 DERKF is a fifth order Runge-Kutta code. It is the simplest of
 the three choices, both algorithmically and in the use of the
 code. DERKF is primarily designed to solve non-stiff and mild-
 ly stiff differential equations when derivative evaluations are
 not expensive. It should generally not be used to get high
 accuracy results nor answers at a great many specific points.
 Because DERKF has very low overhead costs, it will usually
 result in the least expensive integration when solving
 problems requiring a modest amount of accuracy and having
 equations that are not costly to evaluate. DERKF attempts to
 discover when it is not suitable for the task posed.

 DEABM is a variable order (one through twelve) Adams code. Its
 complexity lies somewhere between that of DERKF and DEBDF.
 DEABM is primarily designed to solve non-stiff and mildly
 stiff differential equations when derivative evaluations are
 expensive, high accuracy results are needed or answers at
 many specific points are required. DEABM attempts to discover
 when it is not suitable for the task posed.

 DEBDF is a variable order (one through five) backward
 differentiation formula code. It is the most complicated of

SLATEC3 (DACOSH through DS2Y) - 264

 the three choices. DEBDF is primarily designed to solve stiff
 differential equations at crude to moderate tolerances.
 If the problem is very stiff at all, DERKF and DEABM will be
 quite inefficient compared to DEBDF. However, DEBDF will be
 inefficient compared to DERKF and DEABM on non-stiff problems
 because it uses much more storage, has a much larger overhead,
 and the low order formulas will not give high accuracies
 efficiently.

 The concept of stiffness cannot be described in a few words.
 If you do not know the problem to be stiff, try either DERKF
 or DEABM. Both of these codes will inform you of stiffness
 when the cost of solving such problems becomes important.

 **
 ** ABSTRACT **
 **

 Subroutine DERKF uses a Runge-Kutta-Fehlberg (4,5) method to
 integrate a system of NEQ first order ordinary differential
 equations of the form
 DU/DX = F(X,U)
 when the vector Y(*) of initial values for U(*) at X=T is given.
 The subroutine integrates from T to TOUT. It is easy to continue the
 integration to get results at additional TOUT. This is the interval
 mode of operation. It is also easy for the routine to return with
 the solution at each intermediate step on the way to TOUT. This is
 the intermediate-output mode of operation.

 DERKF uses subprograms DERKFS, DEFEHL, HSTART, HVNRM, R1MACH, and
 the error handling routine XERMSG. The only machine dependent
 parameters to be assigned appear in R1MACH.

 **
 ** DESCRIPTION OF THE ARGUMENTS TO DERKF (AN OVERVIEW) **
 **

 The Parameters are:

 F -- This is the name of a subroutine which you provide to
 define the differential equations.

 NEQ -- This is the number of (first order) differential
 equations to be integrated.

 T -- This is a value of the independent variable.

 Y(*) -- This array contains the solution components at T.

 TOUT -- This is a point at which a solution is desired.

 INFO(*) -- The basic task of the code is to integrate the
 differential equations from T to TOUT and return an
 answer at TOUT. INFO(*) is an INTEGER array which is used
 to communicate exactly how you want this task to be
 carried out.

 RTOL, ATOL -- These quantities represent relative and absolute
 error tolerances which you provide to indicate how
 accurately you wish the solution to be computed. You may

SLATEC3 (DACOSH through DS2Y) - 265

 choose them to be both scalars or else both vectors.

 IDID -- This scalar quantity is an indicator reporting what
 the code did. You must monitor this INTEGER variable to
 decide what action to take next.

 RWORK(*), LRW -- RWORK(*) is a REAL work array of length LRW
 which provides the code with needed storage space.

 IWORK(*), LIW -- IWORK(*) is an INTEGER work array of length LIW
 which provides the code with needed storage space and an
 across call flag.

 RPAR, IPAR -- These are REAL and INTEGER parameter arrays which
 you can use for communication between your calling
 program and the F subroutine.

 Quantities which are used as input items are
 NEQ, T, Y(*), TOUT, INFO(*),
 RTOL, ATOL, LRW and LIW.

 Quantities which may be altered by the code are
 T, Y(*), INFO(1), RTOL, ATOL,
 IDID, RWORK(*) and IWORK(*).

 **
 ** INPUT -- What to do On The First Call To DERKF **
 **

 The first call of the code is defined to be the start of each new
 problem. Read through the descriptions of all the following items,
 provide sufficient storage space for designated arrays, set
 appropriate variables for the initialization of the problem, and
 give information about how you want the problem to be solved.

 F -- Provide a subroutine of the form
 F(X,U,UPRIME,RPAR,IPAR)
 to define the system of first order differential equations
 which is to be solved. For the given values of X and the
 vector U(*)=(U(1),U(2),...,U(NEQ)) , the subroutine must
 evaluate the NEQ components of the system of differential
 equations DU/DX=F(X,U) and store the derivatives in the
 array UPRIME(*), that is, UPRIME(I) = * DU(I)/DX * for
 equations I=1,...,NEQ.

 Subroutine F must not alter X or U(*). You must declare
 the name F in an external statement in your program that
 calls DERKF. You must dimension U and UPRIME in F.

 RPAR and IPAR are REAL and INTEGER parameter arrays which
 you can use for communication between your calling program
 and subroutine F. They are not used or altered by DERKF.
 If you do not need RPAR or IPAR, ignore these parameters
 by treating them as dummy arguments. If you do choose to
 use them, dimension them in your calling program and in F
 as arrays of appropriate length.

 NEQ -- Set it to the number of differential equations.
 (NEQ .GE. 1)

SLATEC3 (DACOSH through DS2Y) - 266

 T -- Set it to the initial point of the integration.
 You must use a program variable for T because the code
 changes its value.

 Y(*) -- Set this vector to the initial values of the NEQ solution
 components at the initial point. You must dimension Y at
 least NEQ in your calling program.

 TOUT -- Set it to the first point at which a solution
 is desired. You can take TOUT = T, in which case the code
 will evaluate the derivative of the solution at T and
 return. Integration either forward in T (TOUT .GT. T) or
 backward in T (TOUT .LT. T) is permitted.

 The code advances the solution from T to TOUT using
 step sizes which are automatically selected so as to
 achieve the desired accuracy. If you wish, the code will
 return with the solution and its derivative following
 each intermediate step (intermediate-output mode) so that
 you can monitor them, but you still must provide TOUT in
 accord with the basic aim of the code.

 The first step taken by the code is a critical one
 because it must reflect how fast the solution changes near
 the initial point. The code automatically selects an
 initial step size which is practically always suitable for
 the problem. By using the fact that the code will not
 step past TOUT in the first step, you could, if necessary,
 restrict the length of the initial step size.

 For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP. Since DERKF will never step past a TOUT point,
 you need only make sure that no TOUT lies beyond TSTOP.

 INFO(*) -- Use the INFO array to give the code more details about
 how you want your problem solved. This array should be
 dimensioned of length 15 to accommodate other members of
 DEPAC or possible future extensions, though DERKF uses
 only the first three entries. You must respond to all of
 the following items which are arranged as questions. The
 simplest use of the code corresponds to answering all
 questions as YES ,i.e. setting all entries of INFO to 0.

 INFO(1) -- This parameter enables the code to initialize
 itself. You must set it to indicate the start of every
 new problem.

 **** Is this the first call for this problem ...
 YES -- Set INFO(1) = 0
 NO -- Not applicable here.
 See below for continuation calls. ****

 INFO(2) -- How much accuracy you want of your solution
 is specified by the error tolerances RTOL and ATOL.
 The simplest use is to take them both to be scalars.
 To obtain more flexibility, they can both be vectors.
 The code must be told your choice.

SLATEC3 (DACOSH through DS2Y) - 267

 **** Are both error tolerances RTOL, ATOL scalars ...
 YES -- Set INFO(2) = 0
 and input scalars for both RTOL and ATOL
 NO -- Set INFO(2) = 1
 and input arrays for both RTOL and ATOL ****

 INFO(3) -- The code integrates from T in the direction
 of TOUT by steps. If you wish, it will return the
 computed solution and derivative at the next
 intermediate step (the intermediate-output mode).
 This is a good way to proceed if you want to see the
 behavior of the solution. If you must have solutions at
 a great many specific TOUT points, this code is
 INEFFICIENT. The code DEABM in DEPAC handles this task
 more efficiently.

 **** Do you want the solution only at
 TOUT (and not at the next intermediate step) ...
 YES -- Set INFO(3) = 0
 NO -- Set INFO(3) = 1 ****

 RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL)
 error tolerances to tell the code how accurately you want
 the solution to be computed. They must be defined as
 program variables because the code may change them. You
 have two choices --
 Both RTOL and ATOL are scalars. (INFO(2)=0)
 Both RTOL and ATOL are vectors. (INFO(2)=1)
 In either case all components must be non-negative.

 The tolerances are used by the code in a local error test
 at each step which requires roughly that
 ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
 for each vector component.
 (More specifically, a maximum norm is used to measure
 the size of vectors, and the error test uses the average
 of the magnitude of the solution at the beginning and end
 of the step.)

 The true (global) error is the difference between the true
 solution of the initial value problem and the computed
 approximation. Practically all present day codes,
 including this one, control the local error at each step
 and do not even attempt to control the global error
 directly. Roughly speaking, they produce a solution Y(T)
 which satisfies the differential equations with a
 residual R(T), DY(T)/DT = F(T,Y(T)) + R(T) ,
 and, almost always, R(T) is bounded by the error
 tolerances. Usually, but not always, the true accuracy of
 the computed Y is comparable to the error tolerances. This
 code will usually, but not always, deliver a more accurate
 solution if you reduce the tolerances and integrate again.
 By comparing two such solutions you can get a fairly
 reliable idea of the true error in the solution at the
 bigger tolerances.

 Setting ATOL=0. results in a pure relative error test on
 that component. Setting RTOL=0. yields a pure absolute
 error test on that component. A mixed test with non-zero

SLATEC3 (DACOSH through DS2Y) - 268

 RTOL and ATOL corresponds roughly to a relative error
 test when the solution component is much bigger than ATOL
 and to an absolute error test when the solution component
 is smaller than the threshold ATOL.

 Proper selection of the absolute error control parameters
 ATOL requires you to have some idea of the scale of the
 solution components. To acquire this information may mean
 that you will have to solve the problem more than once. In
 the absence of scale information, you should ask for some
 relative accuracy in all the components (by setting RTOL
 values non-zero) and perhaps impose extremely small
 absolute error tolerances to protect against the danger of
 a solution component becoming zero.

 The code will not attempt to compute a solution at an
 accuracy unreasonable for the machine being used. It will
 advise you if you ask for too much accuracy and inform
 you as to the maximum accuracy it believes possible.
 If you want relative accuracies smaller than about
 10**(-8), you should not ordinarily use DERKF. The code
 DEABM in DEPAC obtains stringent accuracies more
 efficiently.

 RWORK(*) -- Dimension this REAL work array of length LRW in your
 calling program.

 LRW -- Set it to the declared length of the RWORK array.
 You must have LRW .GE. 33+7*NEQ

 IWORK(*) -- Dimension this INTEGER work array of length LIW in
 your calling program.

 LIW -- Set it to the declared length of the IWORK array.
 You must have LIW .GE. 34

 RPAR, IPAR -- These are parameter arrays, of REAL and INTEGER
 type, respectively. You can use them for communication
 between your program that calls DERKF and the F
 subroutine. They are not used or altered by DERKF. If
 you do not need RPAR or IPAR, ignore these parameters by
 treating them as dummy arguments. If you do choose to use
 them, dimension them in your calling program and in F as
 arrays of appropriate length.

 **
 ** OUTPUT -- After any return from DERKF **
 **

 The principal aim of the code is to return a computed solution at
 TOUT, although it is also possible to obtain intermediate results
 along the way. To find out whether the code achieved its goal
 or if the integration process was interrupted before the task was
 completed, you must check the IDID parameter.

 T -- The solution was successfully advanced to the
 output value of T.

 Y(*) -- Contains the computed solution approximation at T.

SLATEC3 (DACOSH through DS2Y) - 269

 You may also be interested in the approximate derivative
 of the solution at T. It is contained in
 RWORK(21),...,RWORK(20+NEQ).

 IDID -- Reports what the code did

 *** Task Completed ***
 Reported by positive values of IDID

 IDID = 1 -- A step was successfully taken in the
 intermediate-output mode. The code has not
 yet reached TOUT.

 IDID = 2 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping exactly to TOUT.

 *** Task Interrupted ***
 Reported by negative values of IDID

 IDID = -1 -- A large amount of work has been expended.
 (500 steps attempted)

 IDID = -2 -- The error tolerances are too stringent.

 IDID = -3 -- The local error test cannot be satisfied
 because you specified a zero component in ATOL
 and the corresponding computed solution
 component is zero. Thus, a pure relative error
 test is impossible for this component.

 IDID = -4 -- The problem appears to be stiff.

 IDID = -5 -- DERKF is being used very inefficiently
 because the natural step size is being
 restricted by too frequent output.

 IDID = -6,-7,..,-32 -- Not applicable for this code but
 used by other members of DEPAC or possible
 future extensions.

 *** Task Terminated ***
 Reported by the value of IDID=-33

 IDID = -33 -- The code has encountered trouble from which
 it cannot recover. A message is printed
 explaining the trouble and control is returned
 to the calling program. For example, this
 occurs when invalid input is detected.

 RTOL, ATOL -- These quantities remain unchanged except when
 IDID = -2. In this case, the error tolerances have been
 increased by the code to values which are estimated to be
 appropriate for continuing the integration. However, the
 reported solution at T was obtained using the input values
 of RTOL and ATOL.

 RWORK, IWORK -- Contain information which is usually of no
 interest to the user but necessary for subsequent calls.
 However, you may find use for

SLATEC3 (DACOSH through DS2Y) - 270

 RWORK(11)--which contains the step size H to be
 attempted on the next step.

 RWORK(12)--If the tolerances have been increased by the
 code (IDID = -2) , they were multiplied by the
 value in RWORK(12).

 RWORK(20+I)--which contains the approximate derivative
 of the solution component Y(I). In DERKF, it
 is always obtained by calling subroutine F to
 evaluate the differential equation using T and
 Y(*).

 **
 ** INPUT -- What To Do To Continue The Integration **
 ** (calls after the first) **
 **

 This code is organized so that subsequent calls to continue the
 integration involve little (if any) additional effort on your
 part. You must monitor the IDID parameter to determine
 what to do next.

 Recalling that the principal task of the code is to integrate
 from T to TOUT (the interval mode), usually all you will need
 to do is specify a new TOUT upon reaching the current TOUT.

 Do not alter any quantity not specifically permitted below,
 in particular do not alter NEQ, T, Y(*), RWORK(*), IWORK(*) or
 the differential equation in subroutine F. Any such alteration
 constitutes a new problem and must be treated as such, i.e.
 you must start afresh.

 You cannot change from vector to scalar error control or vice
 versa (INFO(2)) but you can change the size of the entries of
 RTOL, ATOL. Increasing a tolerance makes the equation easier
 to integrate. Decreasing a tolerance will make the equation
 harder to integrate and should generally be avoided.

 You can switch from the intermediate-output mode to the
 interval mode (INFO(3)) or vice versa at any time.

 The parameter INFO(1) is used by the code to indicate the
 beginning of a new problem and to indicate whether integration
 is to be continued. You must input the value INFO(1) = 0
 when starting a new problem. You must input the value
 INFO(1) = 1 if you wish to continue after an interrupted task.
 Do not set INFO(1) = 0 on a continuation call unless you
 want the code to restart at the current T.

 *** Following a Completed Task ***
 If
 IDID = 1, call the code again to continue the integration
 another step in the direction of TOUT.

 IDID = 2, define a new TOUT and call the code again.
 TOUT must be different from T. You cannot change
 the direction of integration without restarting.

 *** Following an Interrupted Task ***

SLATEC3 (DACOSH through DS2Y) - 271

 To show the code that you realize the task was
 interrupted and that you want to continue, you
 must take appropriate action and reset INFO(1) = 1
 If
 IDID = -1, the code has attempted 500 steps.
 If you want to continue, set INFO(1) = 1 and
 call the code again. An additional 500 steps
 will be allowed.

 IDID = -2, the error tolerances RTOL, ATOL have been
 increased to values the code estimates appropriate
 for continuing. You may want to change them
 yourself. If you are sure you want to continue
 with relaxed error tolerances, set INFO(1)=1 and
 call the code again.

 IDID = -3, a solution component is zero and you set the
 corresponding component of ATOL to zero. If you
 are sure you want to continue, you must first
 alter the error criterion to use positive values
 for those components of ATOL corresponding to zero
 solution components, then set INFO(1)=1 and call
 the code again.

 IDID = -4, the problem appears to be stiff. It is very
 inefficient to solve such problems with DERKF.
 Code DEBDF in DEPAC handles this task efficiently.
 If you are absolutely sure you want to continue
 with DERKF, set INFO(1)=1 and call the code again.

 IDID = -5, you are using DERKF very inefficiently by
 choosing output points TOUT so close together that
 the step size is repeatedly forced to be rather
 smaller than necessary. If you are willing to
 accept solutions at the steps chosen by the code,
 a good way to proceed is to use the intermediate
 output mode (setting INFO(3)=1). If you must have
 solutions at so many specific TOUT points, the
 code DEABM in DEPAC handles this task
 efficiently. If you want to continue with DERKF,
 set INFO(1)=1 and call the code again.

 IDID = -6,-7,..,-32 --- cannot occur with this code but
 used by other members of DEPAC or possible future
 extensions.

 *** Following a Terminated Task ***
 If
 IDID = -33, you cannot continue the solution of this
 problem. An attempt to do so will result in your
 run being terminated.

 **
 *Long Description:

 **
 ** DEPAC Package Overview **
 **

 You have a choice of three differential equation solvers from

SLATEC3 (DACOSH through DS2Y) - 272

 DEPAC. The following brief descriptions are meant to aid you in
 choosing the most appropriate code for your problem.

 DERKF is a fifth order Runge-Kutta code. It is the simplest of
 the three choices, both algorithmically and in the use of the
 code. DERKF is primarily designed to solve non-stiff and
 mildly stiff differential equations when derivative evaluations
 are not expensive. It should generally not be used to get high
 accuracy results nor answers at a great many specific points.
 Because DERKF has very low overhead costs, it will usually
 result in the least expensive integration when solving
 problems requiring a modest amount of accuracy and having
 equations that are not costly to evaluate. DERKF attempts to
 discover when it is not suitable for the task posed.

 DEABM is a variable order (one through twelve) Adams code.
 Its complexity lies somewhere between that of DERKF and
 DEBDF. DEABM is primarily designed to solve non-stiff and
 mildly stiff differential equations when derivative evaluations
 are expensive, high accuracy results are needed or answers at
 many specific points are required. DEABM attempts to discover
 when it is not suitable for the task posed.

 DEBDF is a variable order (one through five) backward
 differentiation formula code. it is the most complicated of
 the three choices. DEBDF is primarily designed to solve stiff
 differential equations at crude to moderate tolerances.
 If the problem is very stiff at all, DERKF and DEABM will be
 quite inefficient compared to DEBDF. However, DEBDF will be
 inefficient compared to DERKF and DEABM on non-stiff problems
 because it uses much more storage, has a much larger overhead,
 and the low order formulas will not give high accuracies
 efficiently.

 The concept of stiffness cannot be described in a few words.
 If you do not know the problem to be stiff, try either DERKF
 or DEABM. Both of these codes will inform you of stiffness
 when the cost of solving such problems becomes important.

 ***REFERENCES L. F. Shampine and H. A. Watts, DEPAC - design of a user
 oriented package of ODE solvers, Report SAND79-2374,
 Sandia Laboratories, 1979.
 L. F. Shampine and H. A. Watts, Practical solution of
 ordinary differential equations by Runge-Kutta
 methods, Report SAND76-0585, Sandia Laboratories,
 1976.
 ***ROUTINES CALLED DERKFS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800501 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891024 Changed references from VNORM to HVNRM. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls, change Prologue
 comments to agree with DDERKF. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 273

DEXINT

 SUBROUTINE DEXINT (X, N, KODE, M, TOL, EN, NZ, IERR)
 ***BEGIN PROLOGUE DEXINT
 ***PURPOSE Compute an M member sequence of exponential integrals
 E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.
 ***LIBRARY SLATEC
 ***CATEGORY C5
 ***TYPE DOUBLE PRECISION (EXINT-S, DEXINT-D)
 ***KEYWORDS EXPONENTIAL INTEGRAL, SPECIAL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 DEXINT computes M member sequences of exponential integrals
 E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0. The
 exponential integral is defined by

 E(N,X)=integral on (1,infinity) of EXP(-XT)/T**N

 where X=0.0 and N=1 cannot occur simultaneously. Formulas
 and notation are found in the NBS Handbook of Mathematical
 Functions (ref. 1).

 The power series is implemented for X .LE. XCUT and the
 confluent hypergeometric representation

 E(A,X) = EXP(-X)*(X**(A-1))*U(A,A,X)

 is computed for X .GT. XCUT. Since sequences are computed in
 a stable fashion by recurring away from X, A is selected as
 the integer closest to X within the constraint N .LE. A .LE.
 N+M-1. For the U computation, A is further modified to be the
 nearest even integer. Indices are carried forward or
 backward by the two term recursion relation

 K*E(K+1,X) + X*E(K,X) = EXP(-X)

 once E(A,X) is computed. The U function is computed by means
 of the backward recursive Miller algorithm applied to the
 three term contiguous relation for U(A+K,A,X), K=0,1,...
 This produces accurate ratios and determines U(A+K,A,X), and
 hence E(A,X), to within a multiplicative constant C.
 Another contiguous relation applied to C*U(A,A,X) and
 C*U(A+1,A,X) gets C*U(A+1,A+1,X), a quantity proportional to
 E(A+1,X). The normalizing constant C is obtained from the
 two term recursion relation above with K=A.

 The maximum number of significant digits obtainable
 is the smaller of 14 and the number of digits carried in
 double precision arithmetic.

 Description of Arguments

 Input * X and TOL are double precision *
 X X .GT. 0.0 for N=1 and X .GE. 0.0 for N .GE. 2
 N order of the first member of the sequence, N .GE. 1
 (X=0.0 and N=1 is an error)
 KODE a selection parameter for scaled values

SLATEC3 (DACOSH through DS2Y) - 274

 KODE=1 returns E(N+K,X), K=0,1,...,M-1.
 =2 returns EXP(X)*E(N+K,X), K=0,1,...,M-1.
 M number of exponential integrals in the sequence,
 M .GE. 1
 TOL relative accuracy wanted, ETOL .LE. TOL .LE. 0.1
 ETOL is the larger of double precision unit
 roundoff = D1MACH(4) and 1.0D-18

 Output * EN is a double precision vector *
 EN a vector of dimension at least M containing values
 EN(K) = E(N+K-1,X) or EXP(X)*E(N+K-1,X), K=1,M
 depending on KODE
 NZ underflow indicator
 NZ=0 a normal return
 NZ=M X exceeds XLIM and an underflow occurs.
 EN(K)=0.0D0 , K=1,M returned on KODE=1
 IERR error flag
 IERR=0, normal return, computation completed
 IERR=1, input error, no computation
 IERR=2, error, no computation
 algorithm termination condition not met

 ***REFERENCES M. Abramowitz and I. A. Stegun, Handbook of
 Mathematical Functions, NBS AMS Series 55, U.S. Dept.
 of Commerce, 1955.
 D. E. Amos, Computation of exponential integrals, ACM
 Transactions on Mathematical Software 6, (1980),
 pp. 365-377 and pp. 420-428.
 ***ROUTINES CALLED D1MACH, DPSIXN, I1MACH
 ***REVISION HISTORY (YYMMDD)
 800501 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 910408 Updated the REFERENCES section. (WRB)
 920207 Updated with code with a revision date of 880811 from
 D. Amos. Included correction of argument list. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 275

DEXPRL

 DOUBLE PRECISION FUNCTION DEXPRL (X)
 ***BEGIN PROLOGUE DEXPRL
 ***PURPOSE Calculate the relative error exponential (EXP(X)-1)/X.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4B
 ***TYPE DOUBLE PRECISION (EXPREL-S, DEXPRL-D, CEXPRL-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, EXPONENTIAL, FIRST ORDER, FNLIB
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate EXPREL(X) = (EXP(X) - 1.0) / X. For small ABS(X) the
 Taylor series is used. If X is negative the reflection formula
 EXPREL(X) = EXP(X) * EXPREL(ABS(X))
 may be used. This reflection formula will be of use when the
 evaluation for small ABS(X) is done by Chebyshev series rather than
 Taylor series.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 770801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 276

DFAC

 DOUBLE PRECISION FUNCTION DFAC (N)
 ***BEGIN PROLOGUE DFAC
 ***PURPOSE Compute the factorial function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C1
 ***TYPE DOUBLE PRECISION (FAC-S, DFAC-D)
 ***KEYWORDS FACTORIAL, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DFAC(N) calculates the double precision factorial for integer
 argument N.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D9LGMC, DGAMLM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 277

DFC

 SUBROUTINE DFC (NDATA, XDATA, YDATA, SDDATA, NORD, NBKPT, BKPT,
 + NCONST, XCONST, YCONST, NDERIV, MODE, COEFF, W, IW)
 ***BEGIN PROLOGUE DFC
 ***PURPOSE Fit a piecewise polynomial curve to discrete data.
 The piecewise polynomials are represented as B-splines.
 The fitting is done in a weighted least squares sense.
 Equality and inequality constraints can be imposed on the
 fitted curve.
 ***LIBRARY SLATEC
 ***CATEGORY K1A1A1, K1A2A, L8A3
 ***TYPE DOUBLE PRECISION (FC-S, DFC-D)
 ***KEYWORDS B-SPLINE, CONSTRAINED LEAST SQUARES, CURVE FITTING,
 WEIGHTED LEAST SQUARES
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 This subprogram fits a piecewise polynomial curve
 to discrete data. The piecewise polynomials are
 represented as B-splines.
 The fitting is done in a weighted least squares sense.
 Equality and inequality constraints can be imposed on the
 fitted curve.

 For a description of the B-splines and usage instructions to
 evaluate them, see

 C. W. de Boor, Package for Calculating with B-Splines.
 SIAM J. Numer. Anal., p. 441, (June, 1977).

 For further documentation and discussion of constrained
 curve fitting using B-splines, see

 R. J. Hanson, Constrained Least Squares Curve Fitting
 to Discrete Data Using B-Splines, a User's
 Guide. Sandia Labs. Tech. Rept. SAND-78-1291,
 December, (1978).

 Input.. All TYPE REAL variables are DOUBLE PRECISION
 NDATA,XDATA(*),
 YDATA(*),
 SDDATA(*)
 The NDATA discrete (X,Y) pairs and the Y value
 standard deviation or uncertainty, SD, are in
 the respective arrays XDATA(*), YDATA(*), and
 SDDATA(*). No sorting of XDATA(*) is
 required. Any non-negative value of NDATA is
 allowed. A negative value of NDATA is an
 error. A zero value for any entry of
 SDDATA(*) will weight that data point as 1.
 Otherwise the weight of that data point is
 the reciprocal of this entry.

 NORD,NBKPT,
 BKPT(*)
 The NBKPT knots of the B-spline of order NORD
 are in the array BKPT(*). Normally the

SLATEC3 (DACOSH through DS2Y) - 278

 problem data interval will be included between
 the limits BKPT(NORD) and BKPT(NBKPT-NORD+1).
 The additional end knots BKPT(I),I=1,...,
 NORD-1 and I=NBKPT-NORD+2,...,NBKPT, are
 required to compute the functions used to fit
 the data. No sorting of BKPT(*) is required.
 Internal to DFC() the extreme end knots may
 be reduced and increased respectively to
 accommodate any data values that are exterior
 to the given knot values. The contents of
 BKPT(*) is not changed.

 NORD must be in the range 1 .LE. NORD .LE. 20.
 The value of NBKPT must satisfy the condition
 NBKPT .GE. 2*NORD.
 Other values are considered errors.

 (The order of the spline is one more than the
 degree of the piecewise polynomial defined on
 each interval. This is consistent with the
 B-spline package convention. For example,
 NORD=4 when we are using piecewise cubics.)

 NCONST,XCONST(*),
 YCONST(*),NDERIV(*)
 The number of conditions that constrain the
 B-spline is NCONST. A constraint is specified
 by an (X,Y) pair in the arrays XCONST(*) and
 YCONST(*), and by the type of constraint and
 derivative value encoded in the array
 NDERIV(*). No sorting of XCONST(*) is
 required. The value of NDERIV(*) is
 determined as follows. Suppose the I-th
 constraint applies to the J-th derivative
 of the B-spline. (Any non-negative value of
 J < NORD is permitted. In particular the
 value J=0 refers to the B-spline itself.)
 For this I-th constraint, set
 XCONST(I)=X,
 YCONST(I)=Y, and
 NDERIV(I)=ITYPE+4*J, where

 ITYPE = 0, if (J-th deriv. at X) .LE. Y.
 = 1, if (J-th deriv. at X) .GE. Y.
 = 2, if (J-th deriv. at X) .EQ. Y.
 = 3, if (J-th deriv. at X) .EQ.
 (J-th deriv. at Y).
 (A value of NDERIV(I)=-1 will cause this
 constraint to be ignored. This subprogram
 feature is often useful when temporarily
 suppressing a constraint while still
 retaining the source code of the calling
 program.)

 MODE
 An input flag that directs the least squares
 solution method used by DFC().

 The variance function, referred to below,
 defines the square of the probable error of

SLATEC3 (DACOSH through DS2Y) - 279

 the fitted curve at any point, XVAL.
 This feature of DFC() allows one to use the
 square root of this variance function to
 determine a probable error band around the
 fitted curve.

 =1 a new problem. No variance function.

 =2 a new problem. Want variance function.

 =3 an old problem. No variance function.

 =4 an old problem. Want variance function.

 Any value of MODE other than 1-4 is an error.

 The user with a new problem can skip directly
 to the description of the input parameters
 IW(1), IW(2).

 If the user correctly specifies the new or old
 problem status, the subprogram DFC() will
 perform more efficiently.
 By an old problem it is meant that subprogram
 DFC() was last called with this same set of
 knots, data points and weights.

 Another often useful deployment of this old
 problem designation can occur when one has
 previously obtained a Q-R orthogonal
 decomposition of the matrix resulting from
 B-spline fitting of data (without constraints)
 at the breakpoints BKPT(I), I=1,...,NBKPT.
 For example, this matrix could be the result
 of sequential accumulation of the least
 squares equations for a very large data set.
 The user writes this code in a manner
 convenient for the application. For the
 discussion here let

 N=NBKPT-NORD, and K=N+3

 Let us assume that an equivalent least squares
 system

 RC=D

 has been obtained. Here R is an N+1 by N
 matrix and D is a vector with N+1 components.
 The last row of R is zero. The matrix R is
 upper triangular and banded. At most NORD of
 the diagonals are nonzero.
 The contents of R and D can be copied to the
 working array W(*) as follows.

 The I-th diagonal of R, which has N-I+1
 elements, is copied to W(*) starting at

 W((I-1)*K+1),

SLATEC3 (DACOSH through DS2Y) - 280

 for I=1,...,NORD.
 The vector D is copied to W(*) starting at

 W(NORD*K+1)

 The input value used for NDATA is arbitrary
 when an old problem is designated. Because
 of the feature of DFC() that checks the
 working storage array lengths, a value not
 exceeding NBKPT should be used. For example,
 use NDATA=0.

 (The constraints or variance function request
 can change in each call to DFC().) A new
 problem is anything other than an old problem.

 IW(1),IW(2)
 The amounts of working storage actually
 allocated for the working arrays W(*) and
 IW(*). These quantities are compared with the
 actual amounts of storage needed in DFC().
 Insufficient storage allocated for either
 W(*) or IW(*) is an error. This feature was
 included in DFC() because misreading the
 storage formulas for W(*) and IW(*) might very
 well lead to subtle and hard-to-find
 programming bugs.

 The length of W(*) must be at least

 NB=(NBKPT-NORD+3)*(NORD+1)+
 2*MAX(NDATA,NBKPT)+NBKPT+NORD**2

 Whenever possible the code uses banded matrix
 processors DBNDAC() and DBNDSL(). These
 are utilized if there are no constraints,
 no variance function is required, and there
 is sufficient data to uniquely determine the
 B-spline coefficients. If the band processors
 cannot be used to determine the solution,
 then the constrained least squares code DLSEI
 is used. In this case the subprogram requires
 an additional block of storage in W(*). For
 the discussion here define the integers NEQCON
 and NINCON respectively as the number of
 equality (ITYPE=2,3) and inequality
 (ITYPE=0,1) constraints imposed on the fitted
 curve. Define

 L=NBKPT-NORD+1

 and note that

 NCONST=NEQCON+NINCON.

 When the subprogram DFC() uses DLSEI() the
 length of the working array W(*) must be at
 least

 LW=NB+(L+NCONST)*L+

SLATEC3 (DACOSH through DS2Y) - 281

 2*(NEQCON+L)+(NINCON+L)+(NINCON+2)*(L+6)

 The length of the array IW(*) must be at least

 IW1=NINCON+2*L

 in any case.

 Output.. All TYPE REAL variables are DOUBLE PRECISION
 MODE
 An output flag that indicates the status
 of the constrained curve fit.

 =-1 a usage error of DFC() occurred. The
 offending condition is noted with the
 SLATEC library error processor, XERMSG.
 In case the working arrays W(*) or IW(*)
 are not long enough, the minimal
 acceptable length is printed.

 = 0 successful constrained curve fit.

 = 1 the requested equality constraints
 are contradictory.

 = 2 the requested inequality constraints
 are contradictory.

 = 3 both equality and inequality constraints
 are contradictory.

 COEFF(*)
 If the output value of MODE=0 or 1, this array
 contains the unknowns obtained from the least
 squares fitting process. These N=NBKPT-NORD
 parameters are the B-spline coefficients.
 For MODE=1, the equality constraints are
 contradictory. To make the fitting process
 more robust, the equality constraints are
 satisfied in a least squares sense. In this
 case the array COEFF(*) contains B-spline
 coefficients for this extended concept of a
 solution. If MODE=-1,2 or 3 on output, the
 array COEFF(*) is undefined.

 Working Arrays.. All Type REAL variables are DOUBLE PRECISION
 W(*),IW(*)
 These arrays are respectively typed DOUBLE
 PRECISION and INTEGER.
 Their required lengths are specified as input
 parameters in IW(1), IW(2) noted above. The
 contents of W(*) must not be modified by the
 user if the variance function is desired.

 Evaluating the
 Variance Function..
 To evaluate the variance function (assuming
 that the uncertainties of the Y values were
 provided to DFC() and an input value of
 MODE=2 or 4 was used), use the function

SLATEC3 (DACOSH through DS2Y) - 282

 subprogram DCV()

 VAR=DCV(XVAL,NDATA,NCONST,NORD,NBKPT,
 BKPT,W)

 Here XVAL is the point where the variance is
 desired. The other arguments have the same
 meaning as in the usage of DFC().

 For those users employing the old problem
 designation, let MDATA be the number of data
 points in the problem. (This may be different
 from NDATA if the old problem designation
 feature was used.) The value, VAR, should be
 multiplied by the quantity

 DBLE(MAX(NDATA-N,1))/DBLE(MAX(MDATA-N,1))

 The output of this subprogram is not defined
 if an input value of MODE=1 or 3 was used in
 FC() or if an output value of MODE=-1, 2, or
 3 was obtained. The variance function, except
 for the scaling factor noted above, is given
 by

 VAR=(transpose of B(XVAL))*C*B(XVAL)

 The vector B(XVAL) is the B-spline basis
 function values at X=XVAL.
 The covariance matrix, C, of the solution
 coefficients accounts only for the least
 squares equations and the explicitly stated
 equality constraints. This fact must be
 considered when interpreting the variance
 function from a data fitting problem that has
 inequality constraints on the fitted curve.

 Evaluating the
 Fitted Curve..
 To evaluate derivative number IDER at XVAL,
 use the function subprogram DBVALU()

 F = DBVALU(BKPT,COEFF,NBKPT-NORD,NORD,IDER,
 XVAL,INBV,WORKB)

 The output of this subprogram will not be
 defined unless an output value of MODE=0 or 1
 was obtained from DFC(), XVAL is in the data
 interval, and IDER is nonnegative and .LT.
 NORD.

 The first time DBVALU() is called, INBV=1
 must be specified. This value of INBV is the
 overwritten by DBVALU(). The array WORKB(*)
 must be of length at least 3*NORD, and must
 not be the same as the W(*) array used in
 the call to DFC().

 DBVALU() expects the breakpoint array BKPT(*)
 to be sorted.

SLATEC3 (DACOSH through DS2Y) - 283

 ***REFERENCES R. J. Hanson, Constrained least squares curve fitting
 to discrete data using B-splines, a users guide,
 Report SAND78-1291, Sandia Laboratories, December
 1978.
 ***ROUTINES CALLED DFCMN
 ***REVISION HISTORY (YYMMDD)
 780801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert references to XERRWV to references to XERMSG. (RWC)
 900607 Editorial changes to Prologue to make Prologues for EFC,
 DEFC, FC, and DFC look as much the same as possible. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 284

DFZERO

 SUBROUTINE DFZERO (F, B, C, R, RE, AE, IFLAG)
 ***BEGIN PROLOGUE DFZERO
 ***PURPOSE Search for a zero of a function F(X) in a given interval
 (B,C). It is designed primarily for problems where F(B)
 and F(C) have opposite signs.
 ***LIBRARY SLATEC
 ***CATEGORY F1B
 ***TYPE DOUBLE PRECISION (FZERO-S, DFZERO-D)
 ***KEYWORDS BISECTION, NONLINEAR, ROOTS, ZEROS
 ***AUTHOR Shampine, L. F., (SNLA)
 Watts, H. A., (SNLA)
 ***DESCRIPTION

 DFZERO searches for a zero of a DOUBLE PRECISION function F(X)
 between the given DOUBLE PRECISION values B and C until the width
 of the interval (B,C) has collapsed to within a tolerance
 specified by the stopping criterion,
 ABS(B-C) .LE. 2.*(RW*ABS(B)+AE).
 The method used is an efficient combination of bisection and the
 secant rule and is due to T. J. Dekker.

 Description Of Arguments

 F :EXT - Name of the DOUBLE PRECISION external function. This
 name must be in an EXTERNAL statement in the calling
 program. F must be a function of one DOUBLE
 PRECISION argument.

 B :INOUT - One end of the DOUBLE PRECISION interval (B,C). The
 value returned for B usually is the better
 approximation to a zero of F.

 C :INOUT - The other end of the DOUBLE PRECISION interval (B,C)

 R :IN - A (better) DOUBLE PRECISION guess of a zero of F
 which could help in speeding up convergence. If F(B)
 and F(R) have opposite signs, a root will be found in
 the interval (B,R); if not, but F(R) and F(C) have
 opposite signs, a root will be found in the interval
 (R,C); otherwise, the interval (B,C) will be
 searched for a possible root. When no better guess
 is known, it is recommended that R be set to B or C,
 since if R is not interior to the interval (B,C), it
 will be ignored.

 RE :IN - Relative error used for RW in the stopping criterion.
 If the requested RE is less than machine precision,
 then RW is set to approximately machine precision.

 AE :IN - Absolute error used in the stopping criterion. If
 the given interval (B,C) contains the origin, then a
 nonzero value should be chosen for AE.

 IFLAG :OUT - A status code. User must check IFLAG after each
 call. Control returns to the user from DFZERO in all
 cases.

SLATEC3 (DACOSH through DS2Y) - 285

 1 B is within the requested tolerance of a zero.
 The interval (B,C) collapsed to the requested
 tolerance, the function changes sign in (B,C), and
 F(X) decreased in magnitude as (B,C) collapsed.

 2 F(B) = 0. However, the interval (B,C) may not have
 collapsed to the requested tolerance.

 3 B may be near a singular point of F(X).
 The interval (B,C) collapsed to the requested tol-
 erance and the function changes sign in (B,C), but
 F(X) increased in magnitude as (B,C) collapsed, i.e.
 ABS(F(B out)) .GT. MAX(ABS(F(B in)),ABS(F(C in)))

 4 No change in sign of F(X) was found although the
 interval (B,C) collapsed to the requested tolerance.
 The user must examine this case and decide whether
 B is near a local minimum of F(X), or B is near a
 zero of even multiplicity, or neither of these.

 5 Too many (.GT. 500) function evaluations used.

 ***REFERENCES L. F. Shampine and H. A. Watts, FZERO, a root-solving
 code, Report SC-TM-70-631, Sandia Laboratories,
 September 1970.
 T. J. Dekker, Finding a zero by means of successive
 linear interpolation, Constructive Aspects of the
 Fundamental Theorem of Algebra, edited by B. Dejon
 and P. Henrici, Wiley-Interscience, 1969.
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 700901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 286

DGAMI

 DOUBLE PRECISION FUNCTION DGAMI (A, X)
 ***BEGIN PROLOGUE DGAMI
 ***PURPOSE Evaluate the incomplete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7E
 ***TYPE DOUBLE PRECISION (GAMI-S, DGAMI-D)
 ***KEYWORDS FNLIB, INCOMPLETE GAMMA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate the incomplete gamma function defined by

 DGAMI = integral from T = 0 to X of EXP(-T) * T**(A-1.0) .

 DGAMI is evaluated for positive values of A and non-negative values
 of X. A slight deterioration of 2 or 3 digits accuracy will occur
 when DGAMI is very large or very small, because logarithmic variables
 are used. The function and both arguments are double precision.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DGAMIT, DLNGAM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 287

DGAMIC

 DOUBLE PRECISION FUNCTION DGAMIC (A, X)
 ***BEGIN PROLOGUE DGAMIC
 ***PURPOSE Calculate the complementary incomplete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7E
 ***TYPE DOUBLE PRECISION (GAMIC-S, DGAMIC-D)
 ***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate the complementary incomplete Gamma function

 DGAMIC = integral from X to infinity of EXP(-T) * T**(A-1.) .

 DGAMIC is evaluated for arbitrary real values of A and for non-
 negative values of X (even though DGAMIC is defined for X .LT.
 0.0), except that for X = 0 and A .LE. 0.0, DGAMIC is undefined.

 DGAMIC, A, and X are DOUBLE PRECISION.

 A slight deterioration of 2 or 3 digits accuracy will occur when
 DGAMIC is very large or very small in absolute value, because log-
 arithmic variables are used. Also, if the parameter A is very close
 to a negative INTEGER (but not a negative integer), there is a loss
 of accuracy, which is reported if the result is less than half
 machine precision.

 ***REFERENCES W. Gautschi, A computational procedure for incomplete
 gamma functions, ACM Transactions on Mathematical
 Software 5, 4 (December 1979), pp. 466-481.
 W. Gautschi, Incomplete gamma functions, Algorithm 542,
 ACM Transactions on Mathematical Software 5, 4
 (December 1979), pp. 482-489.
 ***ROUTINES CALLED D1MACH, D9GMIC, D9GMIT, D9LGIC, D9LGIT, DLGAMS,
 DLNGAM, XERCLR, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 288

DGAMIT

 DOUBLE PRECISION FUNCTION DGAMIT (A, X)
 ***BEGIN PROLOGUE DGAMIT
 ***PURPOSE Calculate Tricomi's form of the incomplete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7E
 ***TYPE DOUBLE PRECISION (GAMIT-S, DGAMIT-D)
 ***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
 SPECIAL FUNCTIONS, TRICOMI
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate Tricomi's incomplete Gamma function defined by

 DGAMIT = X**(-A)/GAMMA(A) * integral from 0 to X of EXP(-T) *
 T**(A-1.)

 for A .GT. 0.0 and by analytic continuation for A .LE. 0.0.
 GAMMA(X) is the complete gamma function of X.

 DGAMIT is evaluated for arbitrary real values of A and for non-
 negative values of X (even though DGAMIT is defined for X .LT.
 0.0), except that for X = 0 and A .LE. 0.0, DGAMIT is infinite,
 which is a fatal error.

 The function and both arguments are DOUBLE PRECISION.

 A slight deterioration of 2 or 3 digits accuracy will occur when
 DGAMIT is very large or very small in absolute value, because log-
 arithmic variables are used. Also, if the parameter A is very
 close to a negative integer (but not a negative integer), there is
 a loss of accuracy, which is reported if the result is less than
 half machine precision.

 ***REFERENCES W. Gautschi, A computational procedure for incomplete
 gamma functions, ACM Transactions on Mathematical
 Software 5, 4 (December 1979), pp. 466-481.
 W. Gautschi, Incomplete gamma functions, Algorithm 542,
 ACM Transactions on Mathematical Software 5, 4
 (December 1979), pp. 482-489.
 ***ROUTINES CALLED D1MACH, D9GMIT, D9LGIC, D9LGIT, DGAMR, DLGAMS,
 DLNGAM, XERCLR, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 289

DGAMLM

 SUBROUTINE DGAMLM (XMIN, XMAX)
 ***BEGIN PROLOGUE DGAMLM
 ***PURPOSE Compute the minimum and maximum bounds for the argument in
 the Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A, R2
 ***TYPE DOUBLE PRECISION (GAMLIM-S, DGAMLM-D)
 ***KEYWORDS COMPLETE GAMMA FUNCTION, FNLIB, LIMITS, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Calculate the minimum and maximum legal bounds for X in gamma(X).
 XMIN and XMAX are not the only bounds, but they are the only non-
 trivial ones to calculate.

 Output Arguments --
 XMIN double precision minimum legal value of X in gamma(X). Any
 smaller value of X might result in underflow.
 XMAX double precision maximum legal value of X in gamma(X). Any
 larger value of X might cause overflow.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 290

DGAMMA

 DOUBLE PRECISION FUNCTION DGAMMA (X)
 ***BEGIN PROLOGUE DGAMMA
 ***PURPOSE Compute the complete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE DOUBLE PRECISION (GAMMA-S, DGAMMA-D, CGAMMA-C)
 ***KEYWORDS COMPLETE GAMMA FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DGAMMA(X) calculates the double precision complete Gamma function
 for double precision argument X.

 Series for GAM on the interval 0. to 1.00000E+00
 with weighted error 5.79E-32
 log weighted error 31.24
 significant figures required 30.00
 decimal places required 32.05

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9LGMC, DCSEVL, DGAMLM, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable name. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 291

DGAMR

 DOUBLE PRECISION FUNCTION DGAMR (X)
 ***BEGIN PROLOGUE DGAMR
 ***PURPOSE Compute the reciprocal of the Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE DOUBLE PRECISION (GAMR-S, DGAMR-D, CGAMR-C)
 ***KEYWORDS FNLIB, RECIPROCAL GAMMA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DGAMR(X) calculates the double precision reciprocal of the
 complete Gamma function for double precision argument X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DGAMMA, DLGAMS, XERCLR, XGETF, XSETF
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 292

DGAUS8

 SUBROUTINE DGAUS8 (FUN, A, B, ERR, ANS, IERR)
 ***BEGIN PROLOGUE DGAUS8
 ***PURPOSE Integrate a real function of one variable over a finite
 interval using an adaptive 8-point Legendre-Gauss
 algorithm. Intended primarily for high accuracy
 integration or integration of smooth functions.
 ***LIBRARY SLATEC
 ***CATEGORY H2A1A1
 ***TYPE DOUBLE PRECISION (GAUS8-S, DGAUS8-D)
 ***KEYWORDS ADAPTIVE QUADRATURE, AUTOMATIC INTEGRATOR,
 GAUSS QUADRATURE, NUMERICAL INTEGRATION
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract *** a DOUBLE PRECISION routine ***
 DGAUS8 integrates real functions of one variable over finite
 intervals using an adaptive 8-point Legendre-Gauss algorithm.
 DGAUS8 is intended primarily for high accuracy integration
 or integration of smooth functions.

 The maximum number of significant digits obtainable in ANS
 is the smaller of 18 and the number of digits carried in
 double precision arithmetic.

 Description of Arguments

 Input--* FUN, A, B, ERR are DOUBLE PRECISION *
 FUN - name of external function to be integrated. This name
 must be in an EXTERNAL statement in the calling program.
 FUN must be a DOUBLE PRECISION function of one DOUBLE
 PRECISION argument. The value of the argument to FUN
 is the variable of integration which ranges from A to B.
 A - lower limit of integration
 B - upper limit of integration (may be less than A)
 ERR - is a requested pseudorelative error tolerance. Normally
 pick a value of ABS(ERR) so that DTOL .LT. ABS(ERR) .LE.
 1.0D-3 where DTOL is the larger of 1.0D-18 and the
 double precision unit roundoff D1MACH(4). ANS will
 normally have no more error than ABS(ERR) times the
 integral of the absolute value of FUN(X). Usually,
 smaller values of ERR yield more accuracy and require
 more function evaluations.

 A negative value for ERR causes an estimate of the
 absolute error in ANS to be returned in ERR. Note that
 ERR must be a variable (not a constant) in this case.
 Note also that the user must reset the value of ERR
 before making any more calls that use the variable ERR.

 Output--* ERR,ANS are double precision *
 ERR - will be an estimate of the absolute error in ANS if the
 input value of ERR was negative. (ERR is unchanged if
 the input value of ERR was non-negative.) The estimated
 error is solely for information to the user and should
 not be used as a correction to the computed integral.
 ANS - computed value of integral

SLATEC3 (DACOSH through DS2Y) - 293

 IERR- a status code
 --Normal codes
 1 ANS most likely meets requested error tolerance,
 or A=B.
 -1 A and B are too nearly equal to allow normal
 integration. ANS is set to zero.
 --Abnormal code
 2 ANS probably does not meet requested error tolerance.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, I1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 810223 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 294

DGBCO

 SUBROUTINE DGBCO (ABD, LDA, N, ML, MU, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE DGBCO
 ***PURPOSE Factor a band matrix by Gaussian elimination and
 estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A2
 ***TYPE DOUBLE PRECISION (SGBCO-S, DGBCO-D, CGBCO-C)
 ***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DGBCO factors a double precision band matrix by Gaussian
 elimination and estimates the condition of the matrix.

 If RCOND is not needed, DGBFA is slightly faster.
 To solve A*X = B , follow DGBCO by DGBSL.
 To compute INVERSE(A)*C , follow DGBCO by DGBSL.
 To compute DETERMINANT(A) , follow DGBCO by DGBDI.

 On Entry

 ABD DOUBLE PRECISION(LDA, N)
 contains the matrix in band storage. The columns
 of the matrix are stored in the columns of ABD and
 the diagonals of the matrix are stored in rows
 ML+1 through 2*ML+MU+1 of ABD .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. 2*ML + MU + 1 .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABD an upper triangular matrix in band storage and
 the multipliers which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

SLATEC3 (DACOSH through DS2Y) - 295

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z DOUBLE PRECISION(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 M = ML + MU + 1
 DO 20 J = 1, N
 I1 = MAX(1, J-MU)
 I2 = MIN(N, J+ML)
 DO 10 I = I1, I2
 K = I - J + M
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses rows ML+1 through 2*ML+MU+1 of ABD .
 In addition, the first ML rows in ABD are used for
 elements generated during the triangularization.
 The total number of rows needed in ABD is 2*ML+MU+1 .
 The ML+MU by ML+MU upper left triangle and the
 ML by ML lower right triangle are not referenced.

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABD should contain

 * * * + + + , * = not used
 * * 13 24 35 46 , + = used for pivoting
 * 12 23 34 45 56
 11 22 33 44 55 66
 21 32 43 54 65 *

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.

SLATEC3 (DACOSH through DS2Y) - 296

 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DDOT, DGBFA, DSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 297

DGBDI

 SUBROUTINE DGBDI (ABD, LDA, N, ML, MU, IPVT, DET)
 ***BEGIN PROLOGUE DGBDI
 ***PURPOSE Compute the determinant of a band matrix using the factors
 computed by DGBCO or DGBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D3A2
 ***TYPE DOUBLE PRECISION (SGBDI-S, DGBDI-D, CGBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
 MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DGBDI computes the determinant of a band matrix
 using the factors computed by DGBCO or DGBFA.
 If the inverse is needed, use DGBSL N times.

 On Entry

 ABD DOUBLE PRECISION(LDA, N)
 the output from DGBCO or DGBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from DGBCO or DGBFA.

 On Return

 DET DOUBLE PRECISION(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)

SLATEC3 (DACOSH through DS2Y) - 298

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 299

DGBFA

 SUBROUTINE DGBFA (ABD, LDA, N, ML, MU, IPVT, INFO)
 ***BEGIN PROLOGUE DGBFA
 ***PURPOSE Factor a band matrix using Gaussian elimination.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A2
 ***TYPE DOUBLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DGBFA factors a double precision band matrix by elimination.

 DGBFA is usually called by DGBCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABD DOUBLE PRECISION(LDA, N)
 contains the matrix in band storage. The columns
 of the matrix are stored in the columns of ABD and
 the diagonals of the matrix are stored in rows
 ML+1 through 2*ML+MU+1 of ABD .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. 2*ML + MU + 1 .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .
 On Return

 ABD an upper triangular matrix in band storage and
 the multipliers which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if U(K,K) .EQ. 0.0 . This is not an error
 condition for this subroutine, but it does
 indicate that DGBSL will divide by zero if
 called. Use RCOND in DGBCO for a reliable

SLATEC3 (DACOSH through DS2Y) - 300

 indication of singularity.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 M = ML + MU + 1
 DO 20 J = 1, N
 I1 = MAX(1, J-MU)
 I2 = MIN(N, J+ML)
 DO 10 I = I1, I2
 K = I - J + M
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses rows ML+1 through 2*ML+MU+1 of ABD .
 In addition, the first ML rows in ABD are used for
 elements generated during the triangularization.
 The total number of rows needed in ABD is 2*ML+MU+1 .
 The ML+MU by ML+MU upper left triangle and the
 ML by ML lower right triangle are not referenced.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSCAL, IDAMAX
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 301

DGBMV

 SUBROUTINE DGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA,
 + X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE DGBMV
 ***PURPOSE Perform one of the matrix-vector operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SGBMV-S, DGBMV-D, CGBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DGBMV performs one of the matrix-vector operations

 y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n band matrix, with kl sub-diagonals and ku super-diagonals.

 Parameters
 ==========

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANS = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 KL - INTEGER.
 On entry, KL specifies the number of sub-diagonals of the
 matrix A. KL must satisfy 0 .le. KL.
 Unchanged on exit.

 KU - INTEGER.
 On entry, KU specifies the number of super-diagonals of the
 matrix A. KU must satisfy 0 .le. KU.
 Unchanged on exit.

SLATEC3 (DACOSH through DS2Y) - 302

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry, the leading (kl + ku + 1) by n part of the
 array A must contain the matrix of coefficients, supplied
 column by column, with the leading diagonal of the matrix in
 row (ku + 1) of the array, the first super-diagonal
 starting at position 2 in row ku, the first sub-diagonal
 starting at position 1 in row (ku + 2), and so on.
 Elements in the array A that do not correspond to elements
 in the band matrix (such as the top left ku by ku triangle)
 are not referenced.
 The following program segment will transfer a band matrix
 from conventional full matrix storage to band storage:

 DO 20, J = 1, N
 K = KU + 1 - J
 DO 10, I = MAX(1, J - KU), MIN(M, J + KL)
 A(K + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (kl + ku + 1).
 Unchanged on exit.

 X - DOUBLE PRECISION array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)) when TRANS = 'N' or 'n'
 and at least
 (1 + (m - 1)*abs(INCX)) otherwise.
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - DOUBLE PRECISION array of DIMENSION at least
 (1 + (m - 1)*abs(INCY)) when TRANS = 'N' or 'n'
 and at least
 (1 + (n - 1)*abs(INCY)) otherwise.
 Before entry, the incremented array Y must contain the
 vector y. On exit, Y is overwritten by the updated vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.

SLATEC3 (DACOSH through DS2Y) - 303

 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 304

DGBSL

 SUBROUTINE DGBSL (ABD, LDA, N, ML, MU, IPVT, B, JOB)
 ***BEGIN PROLOGUE DGBSL
 ***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using
 the factors computed by DGBCO or DGBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A2
 ***TYPE DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DGBSL solves the double precision band system
 A * X = B or TRANS(A) * X = B
 using the factors computed by DGBCO or DGBFA.

 On Entry

 ABD DOUBLE PRECISION(LDA, N)
 the output from DGBCO or DGBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from DGBCO or DGBFA.

 B DOUBLE PRECISION(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B ,
 = nonzero to solve TRANS(A)*X = B , where
 TRANS(A) is the transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically this indicates singularity
 but it is often caused by improper arguments or improper
 setting of LDA . It will not occur if the subroutines are
 called correctly and if DGBCO has set RCOND .GT. 0.0
 or DGBFA has set INFO .EQ. 0 .

SLATEC3 (DACOSH through DS2Y) - 305

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z)
 IF (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0)
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 306

DGECO

 SUBROUTINE DGECO (A, LDA, N, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE DGECO
 ***PURPOSE Factor a matrix using Gaussian elimination and estimate
 the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A1
 ***TYPE DOUBLE PRECISION (SGECO-S, DGECO-D, CGECO-C)
 ***KEYWORDS CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DGECO factors a double precision matrix by Gaussian elimination
 and estimates the condition of the matrix.

 If RCOND is not needed, DGEFA is slightly faster.
 To solve A*X = B , follow DGECO by DGESL.
 To compute INVERSE(A)*C , follow DGECO by DGESL.
 To compute DETERMINANT(A) , follow DGECO by DGEDI.
 To compute INVERSE(A) , follow DGECO by DGEDI.

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the matrix to be factored.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix and the multipliers
 which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an INTEGER vector of pivot indices.

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z DOUBLE PRECISION(N)

SLATEC3 (DACOSH through DS2Y) - 307

 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DDOT, DGEFA, DSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 308

DGEDI

 SUBROUTINE DGEDI (A, LDA, N, IPVT, DET, WORK, JOB)
 ***BEGIN PROLOGUE DGEDI
 ***PURPOSE Compute the determinant and inverse of a matrix using the
 factors computed by DGECO or DGEFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D3A1, D2A1
 ***TYPE DOUBLE PRECISION (SGEDI-S, DGEDI-D, CGEDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DGEDI computes the determinant and inverse of a matrix
 using the factors computed by DGECO or DGEFA.

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the output from DGECO or DGEFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 IPVT INTEGER(N)
 the pivot vector from DGECO or DGEFA.

 WORK DOUBLE PRECISION(N)
 work vector. Contents destroyed.

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 A inverse of original matrix if requested.
 Otherwise unchanged.

 DET DOUBLE PRECISION(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly
 and if DGECO has set RCOND .GT. 0.0 or DGEFA has set
 INFO .EQ. 0 .

SLATEC3 (DACOSH through DS2Y) - 309

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSCAL, DSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 310

DGEFA

 SUBROUTINE DGEFA (A, LDA, N, IPVT, INFO)
 ***BEGIN PROLOGUE DGEFA
 ***PURPOSE Factor a matrix using Gaussian elimination.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A1
 ***TYPE DOUBLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C)
 ***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DGEFA factors a double precision matrix by Gaussian elimination.

 DGEFA is usually called by DGECO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (Time for DGECO) = (1 + 9/N)*(Time for DGEFA) .

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the matrix to be factored.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix and the multipliers
 which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if U(K,K) .EQ. 0.0 . This is not an error
 condition for this subroutine, but it does
 indicate that DGESL or DGEDI will divide by zero
 if called. Use RCOND in DGECO for a reliable
 indication of singularity.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSCAL, IDAMAX
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.

SLATEC3 (DACOSH through DS2Y) - 311

 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 312

DGEFS

 SUBROUTINE DGEFS (A, LDA, N, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE DGEFS
 ***PURPOSE Solve a general system of linear equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2A1
 ***TYPE DOUBLE PRECISION (SGEFS-S, DGEFS-D, CGEFS-C)
 ***KEYWORDS COMPLEX LINEAR EQUATIONS, GENERAL MATRIX,
 GENERAL SYSTEM OF LINEAR EQUATIONS
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine DGEFS solves a general NxN system of double
 precision linear equations using LINPACK subroutines DGECO
 and DGESL. That is, if A is an NxN double precision matrix
 and if X and B are double precision N-vectors, then DGEFS
 solves the equation

 A*X=B.

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to find the
 solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK.GT.1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N and IWORK must not have been altered by the user follow-
 ing factorization (ITASK=1). IND will not be changed by DGEFS
 in this case.

 Argument Description ***

 A DOUBLE PRECISION(LDA,N)
 on entry, the doubly subscripted array with dimension
 (LDA,N) which contains the coefficient matrix.
 on return, an upper triangular matrix U and the
 multipliers necessary to construct a matrix L
 so that A=L*U.
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. The first N elements of
 the array A are the elements of the first column of
 the matrix A. N must be greater than or equal to 1.
 (terminal error message IND=-2)
 V DOUBLE PRECISION(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER

SLATEC3 (DACOSH through DS2Y) - 313

 If ITASK=1, the matrix A is factored and then the
 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A and IWORK.
 If ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT. 0 see error message corresponding to IND below.
 WORK DOUBLE PRECISION(N)
 a singly subscripted array of dimension at least N.
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal The matrix A is computationally singular.
 A solution has not been computed.
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 Note- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED D1MACH, DGECO, DGESL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800326 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 314

DGEMM

 SUBROUTINE DGEMM (TRANSA, TRANSB, M, N, ALPHA, A, LDA,
 + B, LDB, BETA, C, LDC)
 ***BEGIN PROLOGUE DGEMM
 ***PURPOSE Perform one of the matrix-matrix operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE DOUBLE PRECISION (SGEMM-S, DGEMM-D, CGEMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 DGEMM performs one of the matrix-matrix operations

 C := alpha*op(A)*op(B) + beta*C,

 where op(X) is one of

 op(X) = X or op(X) = X',

 alpha and beta are scalars, and A, B and C are matrices, with op(A)
 an m by k matrix, op(B) a k by n matrix and C an m by n matrix.

 Parameters
 ==========

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n', op(A) = A.

 TRANSA = 'T' or 't', op(A) = A'.

 TRANSA = 'C' or 'c', op(A) = A'.

 Unchanged on exit.

 TRANSB - CHARACTER*1.
 On entry, TRANSB specifies the form of op(B) to be used in
 the matrix multiplication as follows:

 TRANSB = 'N' or 'n', op(B) = B.

 TRANSB = 'T' or 't', op(B) = B'.

 TRANSB = 'C' or 'c', op(B) = B'.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix
 op(A) and of the matrix C. M must be at least zero.
 Unchanged on exit.

SLATEC3 (DACOSH through DS2Y) - 315

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix
 op(B) and the number of columns of the matrix C. N must be
 at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry, K specifies the number of columns of the matrix
 op(A) and the number of rows of the matrix op(B). K must
 be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, ka), where ka is
 k when TRANSA = 'N' or 'n', and is m otherwise.
 Before entry with TRANSA = 'N' or 'n', the leading m by k
 part of the array A must contain the matrix A, otherwise
 the leading k by m part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANSA = 'N' or 'n' then
 LDA must be at least max(1, m), otherwise LDA must be at
 least max(1, k).
 Unchanged on exit.

 B - DOUBLE PRECISION array of DIMENSION (LDB, kb), where kb is
 n when TRANSB = 'N' or 'n', and is k otherwise.
 Before entry with TRANSB = 'N' or 'n', the leading k by n
 part of the array B must contain the matrix B, otherwise
 the leading n by k part of the array B must contain the
 matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. When TRANSB = 'N' or 'n' then
 LDB must be at least max(1, k), otherwise LDB must be at
 least max(1, n).
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then C need not be set on input.
 Unchanged on exit.

 C - DOUBLE PRECISION array of DIMENSION (LDC, n).
 Before entry, the leading m by n part of the array C must
 contain the matrix C, except when beta is zero, in which
 case C need not be set on entry.
 On exit, the array C is overwritten by the m by n matrix
 (alpha*op(A)*op(B) + beta*C).

 LDC - INTEGER.

SLATEC3 (DACOSH through DS2Y) - 316

 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 317

DGEMV

 SUBROUTINE DGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX,
 + BETA, Y, INCY)
 ***BEGIN PROLOGUE DGEMV
 ***PURPOSE Perform one of the matrix-vector operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (SGEMV-S, DGEMV-D, CGEMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DGEMV performs one of the matrix-vector operations

 y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n matrix.

 Parameters
 ==========

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANS = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry, the leading m by n part of the array A must
 contain the matrix of coefficients.
 Unchanged on exit.

 LDA - INTEGER.

SLATEC3 (DACOSH through DS2Y) - 318

 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, m).
 Unchanged on exit.

 X - DOUBLE PRECISION array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)) when TRANS = 'N' or 'n'
 and at least
 (1 + (m - 1)*abs(INCX)) otherwise.
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - DOUBLE PRECISION.
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - DOUBLE PRECISION array of DIMENSION at least
 (1 + (m - 1)*abs(INCY)) when TRANS = 'N' or 'n'
 and at least
 (1 + (n - 1)*abs(INCY)) otherwise.
 Before entry with BETA non-zero, the incremented array Y
 must contain the vector y. On exit, Y is overwritten by the
 updated vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 319

DGER

 SUBROUTINE DGER (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 ***BEGIN PROLOGUE DGER
 ***PURPOSE Perform the rank 1 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE DOUBLE PRECISION (DGER-D)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DGER performs the rank 1 operation

 A := alpha*x*y' + A,

 where alpha is a scalar, x is an m element vector, y is an n element
 vector and A is an m by n matrix.

 Parameters
 ==========

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - DOUBLE PRECISION.
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - DOUBLE PRECISION array of dimension at least
 (1 + (m - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the m
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 Y - DOUBLE PRECISION array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of

SLATEC3 (DACOSH through DS2Y) - 320

 Y. INCY must not be zero.
 Unchanged on exit.

 A - DOUBLE PRECISION array of DIMENSION (LDA, n).
 Before entry, the leading m by n part of the array A must
 contain the matrix of coefficients. On exit, A is
 overwritten by the updated matrix.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 321

DGESL

 SUBROUTINE DGESL (A, LDA, N, IPVT, B, JOB)
 ***BEGIN PROLOGUE DGESL
 ***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the
 factors computed by DGECO or DGEFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A1
 ***TYPE DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DGESL solves the double precision system
 A * X = B or TRANS(A) * X = B
 using the factors computed by DGECO or DGEFA.

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the output from DGECO or DGEFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 IPVT INTEGER(N)
 the pivot vector from DGECO or DGEFA.

 B DOUBLE PRECISION(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B ,
 = nonzero to solve TRANS(A)*X = B where
 TRANS(A) is the transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically this indicates singularity
 but it is often caused by improper arguments or improper
 setting of LDA . It will not occur if the subroutines are
 called correctly and if DGECO has set RCOND .GT. 0.0
 or DGEFA has set INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL DGECO(A,LDA,N,IPVT,RCOND,Z)
 IF (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL DGESL(A,LDA,N,IPVT,C(1,J),0)

SLATEC3 (DACOSH through DS2Y) - 322

 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 323

DGLSS

 SUBROUTINE DGLSS (A, MDA, M, N, B, MDB, NB, RNORM, WORK, LW,
 + IWORK, LIW, INFO)
 ***BEGIN PROLOGUE DGLSS
 ***PURPOSE Solve a linear least squares problems by performing a QR
 factorization of the input matrix using Householder
 transformations. Emphasis is put on detecting possible
 rank deficiency.
 ***LIBRARY SLATEC
 ***CATEGORY D9, D5
 ***TYPE DOUBLE PRECISION (SGLSS-S, DGLSS-D)
 ***KEYWORDS LINEAR LEAST SQUARES, LQ FACTORIZATION, QR FACTORIZATION,
 UNDERDETERMINED LINEAR SYSTEMS
 ***AUTHOR Manteuffel, T. A., (LANL)
 ***DESCRIPTION

 DGLSS solves both underdetermined and overdetermined
 LINEAR systems AX = B, where A is an M by N matrix
 and B is an M by NB matrix of right hand sides. If
 M.GE.N, the least squares solution is computed by
 decomposing the matrix A into the product of an
 orthogonal matrix Q and an upper triangular matrix
 R (QR factorization). If M.LT.N, the minimal
 length solution is computed by factoring the
 matrix A into the product of a lower triangular
 matrix L and an orthogonal matrix Q (LQ factor-
 ization). If the matrix A is determined to be rank
 deficient, that is the rank of A is less than
 MIN(M,N), then the minimal length least squares
 solution is computed.

 DGLSS assumes full machine precision in the data.
 If more control over the uncertainty in the data
 is desired, the codes DLLSIA and DULSIA are
 recommended.

 DGLSS requires MDA*N + (MDB + 1)*NB + 5*MIN(M,N) dimensioned
 real space and M+N dimensioned integer space.

 **
 * *
 * WARNING - All input arrays are changed on exit. *
 * *
 **
 SUBROUTINE DGLSS(A,MDA,M,N,B,MDB,NB,RNORM,WORK,LW,IWORK,LIW,INFO)

 Input..All TYPE REAL variables are DOUBLE PRECISION

 A(,) Linear coefficient matrix of AX=B, with MDA the
 MDA,M,N actual first dimension of A in the calling program.
 M is the row dimension (no. of EQUATIONS of the
 problem) and N the col dimension (no. of UNKNOWNS).

 B(,) Right hand side(s), with MDB the actual first
 MDB,NB dimension of B in the calling program. NB is the
 number of M by 1 right hand sides. Must have

SLATEC3 (DACOSH through DS2Y) - 324

 MDB.GE.MAX(M,N). If NB = 0, B is never accessed.

 RNORM() Vector of length at least NB. On input the contents
 of RNORM are unused.

 WORK() A real work array dimensioned 5*MIN(M,N).

 LW Actual dimension of WORK.

 IWORK() Integer work array dimensioned at least N+M.

 LIW Actual dimension of IWORK.

 INFO A flag which provides for the efficient
 solution of subsequent problems involving the
 same A but different B.
 If INFO = 0 original call
 INFO = 1 subsequent calls
 On subsequent calls, the user must supply A, INFO,
 LW, IWORK, LIW, and the first 2*MIN(M,N) locations
 of WORK as output by the original call to DGLSS.

 Output..All TYPE REAL variables are DOUBLE PRECISION

 A(,) Contains the triangular part of the reduced matrix
 and the transformation information. It together with
 the first 2*MIN(M,N) elements of WORK (see below)
 completely specify the factorization of A.

 B(,) Contains the N by NB solution matrix X.

 RNORM() Contains the Euclidean length of the NB residual
 vectors B(I)-AX(I), I=1,NB.

 WORK() The first 2*MIN(M,N) locations of WORK contain value
 necessary to reproduce the factorization of A.

 IWORK() The first M+N locations contain the order in
 which the rows and columns of A were used.
 If M.GE.N columns then rows. If M.LT.N rows
 then columns.

 INFO Flag to indicate status of computation on completion
 -1 Parameter error(s)
 0 - Full rank
 N.GT.0 - Reduced rank rank=MIN(M,N)-INFO

 ***REFERENCES T. Manteuffel, An interval analysis approach to rank
 determination in linear least squares problems,
 Report SAND80-0655, Sandia Laboratories, June 1980.
 ***ROUTINES CALLED DLLSIA, DULSIA
 ***REVISION HISTORY (YYMMDD)
 810801 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2

SLATEC3 (DACOSH through DS2Y) - 325

 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 326

DGMRES

 SUBROUTINE DGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX,
 $ RGWK, LRGW, IGWK, LIGW, RWORK, IWORK)
 ***BEGIN PROLOGUE DGMRES
 ***PURPOSE Preconditioned GMRES iterative sparse Ax=b solver.
 This routine uses the generalized minimum residual
 (GMRES) method with preconditioning to solve
 non-symmetric linear systems of the form: Ax = b.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SGMRES-S, DGMRES-D)
 ***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
 Hindmarsh, Alan, (LLNL), alanh@llnl.gov
 Seager, Mark K., (LLNL), seager@llnl.gov
 Lawrence Livermore National Laboratory
 PO Box 808, L-60
 Livermore, CA 94550 (510) 423-3141
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LRGW, IGWK(LIGW), LIGW
 INTEGER IWORK(USER DEFINED)
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, SB(N), SX(N)
 DOUBLE PRECISION RGWK(LRGW), RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL DGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX,
 $ RGWK, LRGW, IGWK, LIGW, RWORK, IWORK)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for the solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply

SLATEC3 (DACOSH through DS2Y) - 327

 Y = A*X given A and X. The name of the MATVEC routine must
 be declared external in the calling program. The calling
 sequence to MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 where N is the number of unknowns, Y is the product A*X
 upon return, X is an input vector, and NELT is the number of
 non-zeros in the SLAP IA, JA, A storage for the matrix A.
 ISYM is a flag which, if non-zero, denotes that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of the routine which solves a linear system Mz = r for
 z given r with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays. The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a double precision array
 that can be used to pass necessary preconditioning information
 and/or workspace to MSOLVE. IWORK is an integer work array
 for the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate the type of convergence criterion used.
 ITOL=0 Means the iteration stops when the test described
 below on the residual RL is satisfied. This is
 the "Natural Stopping Criteria" for this routine.
 Other values of ITOL cause extra, otherwise
 unnecessary, computation per iteration and are
 therefore much less efficient. See ISDGMR (the
 stop test routine) for more information.
 ITOL=1 Means the iteration stops when the first test
 described below on the residual RL is satisfied,
 and there is either right or no preconditioning
 being used.
 ITOL=2 Implies that the user is using left
 preconditioning, and the second stopping criterion
 below is used.
 ITOL=3 Means the iteration stops when the third test
 described below on Minv*Residual is satisfied, and
 there is either left or no preconditioning being
 used.
 ITOL=11 is often useful for checking and comparing
 different routines. For this case, the user must
 supply the "exact" solution or a very accurate
 approximation (one with an error much less than
 TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the
 difference between the iterative approximation and
 the user-supplied solution divided by the 2-norm
 of the user-supplied solution is less than TOL.
 Note that this requires the user to set up the
 "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling
 routine. The routine with this declaration should
 be loaded before the stop test so that the correct
 length is used by the loader. This procedure is
 not standard Fortran and may not work correctly on
 your system (although it has worked on every
 system the authors have tried). If ITOL is not 11

SLATEC3 (DACOSH through DS2Y) - 328

 then this common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described below. If TOL is set
 to zero on input, then a default value of 500*(the smallest
 positive magnitude, machine epsilon) is used.
 ITMAX :DUMMY Integer.
 Maximum number of iterations in most SLAP routines. In
 this routine this does not make sense. The maximum number
 of iterations here is given by ITMAX = MAXL*(NRMAX+1).
 See IGWK for definitions of MAXL and NRMAX.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL. Letting norm() denote the Euclidean
 norm, ERR is defined as follows..

 If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 for right or no preconditioning, and
 ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 for left preconditioning.
 If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 since right or no preconditioning
 being used.
 If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 since left preconditioning is being
 used.
 If ITOL=3, then ERR = Max |(Minv*(B-A*X(L)))(i)/x(i)|
 i=1,n
 If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient storage allocated for
 RGWK or IGWK.
 IERR = 2 => Routine DGMRES failed to reduce the norm
 of the current residual on its last call,
 and so the iteration has stalled. In
 this case, X equals the last computed
 approximation. The user must either
 increase MAXL, or choose a different
 initial guess.
 IERR =-1 => Insufficient length for RGWK array.
 IGWK(6) contains the required minimum
 length of the RGWK array.
 IERR =-2 => Illegal value of ITOL, or ITOL and JPRE
 values are inconsistent.
 For IERR <= 2, RGWK(1) = RHOL, which is the norm on the
 left-hand-side of the relevant stopping test defined
 below associated with the residual for the current
 approximation X(L).
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 SB :IN Double Precision SB(N).

SLATEC3 (DACOSH through DS2Y) - 329

 Array of length N containing scale factors for the right
 hand side vector B. If JSCAL.eq.0 (see below), SB need
 not be supplied.
 SX :IN Double Precision SX(N).
 Array of length N containing scale factors for the solution
 vector X. If JSCAL.eq.0 (see below), SX need not be
 supplied. SB and SX can be the same array in the calling
 program if desired.
 RGWK :INOUT Double Precision RGWK(LRGW).
 Double Precision array used for workspace by DGMRES.
 On return, RGWK(1) = RHOL. See IERR for definition of RHOL.
 LRGW :IN Integer.
 Length of the double precision workspace, RGWK.
 LRGW >= 1 + N*(MAXL+6) + MAXL*(MAXL+3).
 See below for definition of MAXL.
 For the default values, RGWK has size at least 131 + 16*N.
 IGWK :INOUT Integer IGWK(LIGW).
 The following IGWK parameters should be set by the user
 before calling this routine.
 IGWK(1) = MAXL. Maximum dimension of Krylov subspace in
 which X - X0 is to be found (where, X0 is the initial
 guess). The default value of MAXL is 10.
 IGWK(2) = KMP. Maximum number of previous Krylov basis
 vectors to which each new basis vector is made orthogonal.
 The default value of KMP is MAXL.
 IGWK(3) = JSCAL. Flag indicating whether the scaling
 arrays SB and SX are to be used.
 JSCAL = 0 => SB and SX are not used and the algorithm
 will perform as if all SB(I) = 1 and SX(I) = 1.
 JSCAL = 1 => Only SX is used, and the algorithm
 performs as if all SB(I) = 1.
 JSCAL = 2 => Only SB is used, and the algorithm
 performs as if all SX(I) = 1.
 JSCAL = 3 => Both SB and SX are used.
 IGWK(4) = JPRE. Flag indicating whether preconditioning
 is being used.
 JPRE = 0 => There is no preconditioning.
 JPRE > 0 => There is preconditioning on the right
 only, and the solver will call routine MSOLVE.
 JPRE < 0 => There is preconditioning on the left
 only, and the solver will call routine MSOLVE.
 IGWK(5) = NRMAX. Maximum number of restarts of the
 Krylov iteration. The default value of NRMAX = 10.
 if IWORK(5) = -1, then no restarts are performed (in
 this case, NRMAX is set to zero internally).
 The following IWORK parameters are diagnostic information
 made available to the user after this routine completes.
 IGWK(6) = MLWK. Required minimum length of RGWK array.
 IGWK(7) = NMS. The total number of calls to MSOLVE.
 LIGW :IN Integer.
 Length of the integer workspace, IGWK. LIGW >= 20.
 RWORK :WORK Double Precision RWORK(USER DEFINED).
 Double Precision array that can be used for workspace in
 MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used for workspace in MSOLVE.

 *Description:
 DGMRES solves a linear system A*X = B rewritten in the form:

SLATEC3 (DACOSH through DS2Y) - 330

 (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,

 with right preconditioning, or

 (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,

 with left preconditioning, where A is an N-by-N double precision
 matrix, X and B are N-vectors, SB and SX are diagonal scaling
 matrices, and M is a preconditioning matrix. It uses
 preconditioned Krylov subpace methods based on the
 generalized minimum residual method (GMRES). This routine
 optionally performs either the full orthogonalization
 version of the GMRES algorithm or an incomplete variant of
 it. Both versions use restarting of the linear iteration by
 default, although the user can disable this feature.

 The GMRES algorithm generates a sequence of approximations
 X(L) to the true solution of the above linear system. The
 convergence criteria for stopping the iteration is based on
 the size of the scaled norm of the residual R(L) = B -
 A*X(L). The actual stopping test is either:

 norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),

 for right preconditioning, or

 norm(SB*(M-inverse)*(B-A*X(L))) .le.
 TOL*norm(SB*(M-inverse)*B),

 for left preconditioning, where norm() denotes the Euclidean
 norm, and TOL is a positive scalar less than one input by
 the user. If TOL equals zero when DGMRES is called, then a
 default value of 500*(the smallest positive magnitude,
 machine epsilon) is used. If the scaling arrays SB and SX
 are used, then ideally they should be chosen so that the
 vectors SX*X(or SX*M*X) and SB*B have all their components
 approximately equal to one in magnitude. If one wants to
 use the same scaling in X and B, then SB and SX can be the
 same array in the calling program.

 The following is a list of the other routines and their
 functions used by DGMRES:
 DPIGMR Contains the main iteration loop for GMRES.
 DORTH Orthogonalizes a new vector against older basis vectors.
 DHEQR Computes a QR decomposition of a Hessenberg matrix.
 DHELS Solves a Hessenberg least-squares system, using QR
 factors.
 DRLCAL Computes the scaled residual RL.
 DXLCAL Computes the solution XL.
 ISDGMR User-replaceable stopping routine.

 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK in some fashion. The SLAP
 routines DSDCG and DSICCG are examples of this procedure.

SLATEC3 (DACOSH through DS2Y) - 331

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

SLATEC3 (DACOSH through DS2Y) - 332

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***REFERENCES 1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage
 Matrix Methods in Stiff ODE Systems, Lawrence Liver-
 more National Laboratory Report UCRL-95088, Rev. 1,
 Livermore, California, June 1987.
 2. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED D1MACH, DCOPY, DNRM2, DPIGMR
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910506 Corrected errors in C***ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921026 Added check for valid value of ITOL. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 333

DGTSL

 SUBROUTINE DGTSL (N, C, D, E, B, INFO)
 ***BEGIN PROLOGUE DGTSL
 ***PURPOSE Solve a tridiagonal linear system.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A2A
 ***TYPE DOUBLE PRECISION (SGTSL-S, DGTSL-D, CGTSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, TRIDIAGONAL
 ***AUTHOR Dongarra, J., (ANL)
 ***DESCRIPTION

 DGTSL given a general tridiagonal matrix and a right hand
 side will find the solution.

 On Entry

 N INTEGER
 is the order of the tridiagonal matrix.

 C DOUBLE PRECISION(N)
 is the subdiagonal of the tridiagonal matrix.
 C(2) through C(N) should contain the subdiagonal.
 On output C is destroyed.

 D DOUBLE PRECISION(N)
 is the diagonal of the tridiagonal matrix.
 On output D is destroyed.

 E DOUBLE PRECISION(N)
 is the superdiagonal of the tridiagonal matrix.
 E(1) through E(N-1) should contain the superdiagonal.
 On output E is destroyed.

 B DOUBLE PRECISION(N)
 is the right hand side vector.

 On Return

 B is the solution vector.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th element of the diagonal becomes
 exactly zero. The subroutine returns when
 this is detected.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)

SLATEC3 (DACOSH through DS2Y) - 334

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 335

DHFTI

 SUBROUTINE DHFTI (A, MDA, M, N, B, MDB, NB, TAU, KRANK, RNORM, H,
 + G, IP)
 ***BEGIN PROLOGUE DHFTI
 ***PURPOSE Solve a least squares problem for banded matrices using
 sequential accumulation of rows of the data matrix.
 Exactly one right-hand side vector is permitted.
 ***LIBRARY SLATEC
 ***CATEGORY D9
 ***TYPE DOUBLE PRECISION (HFTI-S, DHFTI-D)
 ***KEYWORDS CURVE FITTING, LEAST SQUARES
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 DIMENSION A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N)

 This subroutine solves a linear least squares problem or a set of
 linear least squares problems having the same matrix but different
 right-side vectors. The problem data consists of an M by N matrix
 A, an M by NB matrix B, and an absolute tolerance parameter TAU
 whose usage is described below. The NB column vectors of B
 represent right-side vectors for NB distinct linear least squares
 problems.

 This set of problems can also be written as the matrix least
 squares problem

 AX = B,

 where X is the N by NB solution matrix.

 Note that if B is the M by M identity matrix, then X will be the
 pseudo-inverse of A.

 This subroutine first transforms the augmented matrix (A B) to a
 matrix (R C) using premultiplying Householder transformations with
 column interchanges. All subdiagonal elements in the matrix R are
 zero and its diagonal elements satisfy

 ABS(R(I,I)).GE.ABS(R(I+1,I+1)),

 I = 1,...,L-1, where

 L = MIN(M,N).

 The subroutine will compute an integer, KRANK, equal to the number
 of diagonal terms of R that exceed TAU in magnitude. Then a
 solution of minimum Euclidean length is computed using the first
 KRANK rows of (R C).

 To be specific we suggest that the user consider an easily
 computable matrix norm, such as, the maximum of all column sums of
 magnitudes.

 Now if the relative uncertainty of B is EPS, (norm of uncertainty/
 norm of B), it is suggested that TAU be set approximately equal to

SLATEC3 (DACOSH through DS2Y) - 336

 EPS*(norm of A).

 The user must dimension all arrays appearing in the call list..
 A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N). This
 permits the solution of a range of problems in the same array
 space.

 The entire set of parameters for DHFTI are

 INPUT.. All TYPE REAL variables are DOUBLE PRECISION

 A(*,*),MDA,M,N The array A(*,*) initially contains the M by N
 matrix A of the least squares problem AX = B.
 The first dimensioning parameter of the array
 A(*,*) is MDA, which must satisfy MDA.GE.M
 Either M.GE.N or M.LT.N is permitted. There
 is no restriction on the rank of A. The
 condition MDA.LT.M is considered an error.

 B(*),MDB,NB If NB = 0 the subroutine will perform the
 orthogonal decomposition but will make no
 references to the array B(*). If NB.GT.0
 the array B(*) must initially contain the M by
 NB matrix B of the least squares problem AX =
 B. If NB.GE.2 the array B(*) must be doubly
 subscripted with first dimensioning parameter
 MDB.GE.MAX(M,N). If NB = 1 the array B(*) may
 be either doubly or singly subscripted. In
 the latter case the value of MDB is arbitrary
 but it should be set to some valid integer
 value such as MDB = M.

 The condition of NB.GT.1.AND.MDB.LT. MAX(M,N)
 is considered an error.

 TAU Absolute tolerance parameter provided by user
 for pseudorank determination.

 H(*),G(*),IP(*) Arrays of working space used by DHFTI.

 OUTPUT.. All TYPE REAL variables are DOUBLE PRECISION

 A(*,*) The contents of the array A(*,*) will be
 modified by the subroutine. These contents
 are not generally required by the user.

 B(*) On return the array B(*) will contain the N by
 NB solution matrix X.

 KRANK Set by the subroutine to indicate the
 pseudorank of A.

 RNORM(*) On return, RNORM(J) will contain the Euclidean
 norm of the residual vector for the problem
 defined by the J-th column vector of the array
 B(*,*) for J = 1,...,NB.

 H(*),G(*) On return these arrays respectively contain
 elements of the pre- and post-multiplying
 Householder transformations used to compute

SLATEC3 (DACOSH through DS2Y) - 337

 the minimum Euclidean length solution.

 IP(*) Array in which the subroutine records indices
 describing the permutation of column vectors.
 The contents of arrays H(*),G(*) and IP(*)
 are not generally required by the user.

 ***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares
 Problems, Prentice-Hall, Inc., 1974, Chapter 14.
 ***ROUTINES CALLED D1MACH, DH12, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 901005 Replace usage of DDIFF with usage of D1MACH. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 338

DINTP

 SUBROUTINE DINTP (X, Y, XOUT, YOUT, YPOUT, NEQN, KOLD, PHI, IVC,
 + IV, KGI, GI, ALPHA, OG, OW, OX, OY)
 ***BEGIN PROLOGUE DINTP
 ***PURPOSE Approximate the solution at XOUT by evaluating the
 polynomial computed in DSTEPS at XOUT. Must be used in
 conjunction with DSTEPS.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A1B
 ***TYPE DOUBLE PRECISION (SINTRP-S, DINTP-D)
 ***KEYWORDS ADAMS METHOD, DEPAC, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR,
 SMOOTH INTERPOLANT
 ***AUTHOR Watts, H. A., (SNLA)
 ***DESCRIPTION

 The methods in subroutine DSTEPS approximate the solution near X
 by a polynomial. Subroutine DINTP approximates the solution at
 XOUT by evaluating the polynomial there. Information defining this
 polynomial is passed from DSTEPS so DINTP cannot be used alone.

 Subroutine DSTEPS is completely explained and documented in the text
 "Computer Solution of Ordinary Differential Equations, the Initial
 Value Problem" by L. F. Shampine and M. K. Gordon.

 Input to DINTP --

 The user provides storage in the calling program for the arrays in
 the call list
 DIMENSION Y(NEQN),YOUT(NEQN),YPOUT(NEQN),PHI(NEQN,16),OY(NEQN)
 AND ALPHA(12),OG(13),OW(12),GI(11),IV(10)
 and defines
 XOUT -- point at which solution is desired.
 The remaining parameters are defined in DSTEPS and passed to
 DINTP from that subroutine

 Output from DINTP --

 YOUT(*) -- solution at XOUT
 YPOUT(*) -- derivative of solution at XOUT
 The remaining parameters are returned unaltered from their input
 values. Integration with DSTEPS may be continued.

 ***REFERENCES H. A. Watts, A smoother interpolant for DE/STEP, INTRP
 II, Report SAND84-0293, Sandia Laboratories, 1984.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 840201 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 339

DINTRV

 SUBROUTINE DINTRV (XT, LXT, X, ILO, ILEFT, MFLAG)
 ***BEGIN PROLOGUE DINTRV
 ***PURPOSE Compute the largest integer ILEFT in 1 .LE. ILEFT .LE. LXT
 such that XT(ILEFT) .LE. X where XT(*) is a subdivision of
 the X interval.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE DOUBLE PRECISION (INTRV-S, DINTRV-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****
 DINTRV is the INTERV routine of the reference.

 DINTRV computes the largest integer ILEFT in 1 .LE. ILEFT .LE.
 LXT such that XT(ILEFT) .LE. X where XT(*) is a subdivision of
 the X interval. Precisely,

 X .LT. XT(1) 1 -1
 if XT(I) .LE. X .LT. XT(I+1) then ILEFT=I , MFLAG=0
 XT(LXT) .LE. X LXT 1,

 That is, when multiplicities are present in the break point
 to the left of X, the largest index is taken for ILEFT.

 Description of Arguments

 Input XT,X are double precision
 XT - XT is a knot or break point vector of length LXT
 LXT - length of the XT vector
 X - argument
 ILO - an initialization parameter which must be set
 to 1 the first time the spline array XT is
 processed by DINTRV.

 Output
 ILO - ILO contains information for efficient process-
 ing after the initial call and ILO must not be
 changed by the user. Distinct splines require
 distinct ILO parameters.
 ILEFT - largest integer satisfying XT(ILEFT) .LE. X
 MFLAG - signals when X lies out of bounds

 Error Conditions
 None

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)

SLATEC3 (DACOSH through DS2Y) - 340

 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 341

DIR

 SUBROUTINE DIR(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE, ITOL,
 $ TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, DZ, RWORK, IWORK)
 ***BEGIN PROLOGUE DIR
 ***PURPOSE Preconditioned Iterative Refinement Sparse Ax = b Solver.
 Routine to solve a general linear system Ax = b using
 iterative refinement with a matrix splitting.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SIR-S, DIR-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N), DZ(N)
 DOUBLE PRECISION RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL DIR(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE, ITOL,
 $ TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, DZ, RWORK, IWORK)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 Y = A*X given A and X. The name of the MATVEC routine must
 be declared external in the calling program. The calling
 sequence to MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X

SLATEC3 (DACOSH through DS2Y) - 342

 upon return, X is an input vector, NELT is the number of
 non-zeros in the SLAP IA, JA, A storage for the matrix A.
 ISYM is a flag which, if non-zero, denotes that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for
 Z given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a double precision array
 that can be used to pass necessary preconditioning information
 and/or workspace to MSOLVE. IWORK is an integer work array
 for the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.

SLATEC3 (DACOSH through DS2Y) - 343

 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Double Precision R(N).
 Z :WORK Double Precision Z(N).
 DZ :WORK Double Precision DZ(N).
 Double Precision arrays used for workspace.
 RWORK :WORK Double Precision RWORK(USER DEFINED).
 Double Precision array that can be used by MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used by MSOLVE.

 *Description:
 The basic algorithm for iterative refinement (also known as
 iterative improvement) is:

 n+1 n -1 n
 X = X + M (B - AX).

 -1 -1
 If M = A then this is the standard iterative refinement
 algorithm and the "subtraction" in the residual calculation
 should be done in double precision (which it is not in this
 routine).
 If M = DIAG(A), the diagonal of A, then iterative refinement
 is known as Jacobi's method. The SLAP routine DSJAC
 implements this iterative strategy.
 If M = L, the lower triangle of A, then iterative refinement
 is known as Gauss-Seidel. The SLAP routine DSGS implements
 this iterative strategy.

 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK) in some fashion. The SLAP
 routines DSJAC and DSGS are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear

SLATEC3 (DACOSH through DS2Y) - 344

 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the double pre-
 cision array A. In other words, for each column in the
 matrix first put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
 th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
 are the last elements of the ICOL-th column. Note that we
 always have JA(N+1)=NELT+1, where N is the number of columns
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Examples:
 See the SLAP routines DSJAC, DSGS

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSJAC, DSGS
 ***REFERENCES 1. Gene Golub and Charles Van Loan, Matrix Computations,
 Johns Hopkins University Press, Baltimore, Maryland,
 1983.
 2. Mark K. Seager, A SLAP for the Masses, in

SLATEC3 (DACOSH through DS2Y) - 345

 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED D1MACH, ISDIR
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 346

DLBETA

 DOUBLE PRECISION FUNCTION DLBETA (A, B)
 ***BEGIN PROLOGUE DLBETA
 ***PURPOSE Compute the natural logarithm of the complete Beta
 function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7B
 ***TYPE DOUBLE PRECISION (ALBETA-S, DLBETA-D, CLBETA-C)
 ***KEYWORDS FNLIB, LOGARITHM OF THE COMPLETE BETA FUNCTION,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DLBETA(A,B) calculates the double precision natural logarithm of
 the complete beta function for double precision arguments
 A and B.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D9LGMC, DGAMMA, DLNGAM, DLNREL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 347

DLGAMS

 SUBROUTINE DLGAMS (X, DLGAM, SGNGAM)
 ***BEGIN PROLOGUE DLGAMS
 ***PURPOSE Compute the logarithm of the absolute value of the Gamma
 function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE DOUBLE PRECISION (ALGAMS-S, DLGAMS-D)
 ***KEYWORDS ABSOLUTE VALUE OF THE LOGARITHM OF THE GAMMA FUNCTION,
 FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DLGAMS(X,DLGAM,SGNGAM) calculates the double precision natural
 logarithm of the absolute value of the Gamma function for
 double precision argument X and stores the result in double
 precision argument DLGAM.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DLNGAM
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 348

DLI

 DOUBLE PRECISION FUNCTION DLI (X)
 ***BEGIN PROLOGUE DLI
 ***PURPOSE Compute the logarithmic integral.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C5
 ***TYPE DOUBLE PRECISION (ALI-S, DLI-D)
 ***KEYWORDS FNLIB, LOGARITHMIC INTEGRAL, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DLI(X) calculates the double precision logarithmic integral
 for double precision argument X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DEI, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 349

DLLSIA

 SUBROUTINE DLLSIA (A, MDA, M, N, B, MDB, NB, RE, AE, KEY, MODE,
 + NP, KRANK, KSURE, RNORM, W, LW, IWORK, LIW, INFO)
 ***BEGIN PROLOGUE DLLSIA
 ***PURPOSE Solve linear least squares problems by performing a QR
 factorization of the input matrix using Householder
 transformations. Emphasis is put on detecting possible
 rank deficiency.
 ***LIBRARY SLATEC
 ***CATEGORY D9, D5
 ***TYPE DOUBLE PRECISION (LLSIA-S, DLLSIA-D)
 ***KEYWORDS LINEAR LEAST SQUARES, QR FACTORIZATION
 ***AUTHOR Manteuffel, T. A., (LANL)
 ***DESCRIPTION

 DLLSIA computes the least squares solution(s) to the problem AX=B
 where A is an M by N matrix with M.GE.N and B is the M by NB
 matrix of right hand sides. User input bounds on the uncertainty
 in the elements of A are used to detect numerical rank deficiency.
 The algorithm employs a row and column pivot strategy to
 minimize the growth of uncertainty and round-off errors.

 DLLSIA requires (MDA+6)*N + (MDB+1)*NB + M dimensioned space

 **
 * *
 * WARNING - All input arrays are changed on exit. *
 * *
 **
 SUBROUTINE DLLSIA(A,MDA,M,N,B,MDB,NB,RE,AE,KEY,MODE,NP,
 1 KRANK,KSURE,RNORM,W,LW,IWORK,LIW,INFO)

 Input..All TYPE REAL variables are DOUBLE PRECISION

 A(,) Linear coefficient matrix of AX=B, with MDA the
 MDA,M,N actual first dimension of A in the calling program.
 M is the row dimension (no. of EQUATIONS of the
 problem) and N the col dimension (no. of UNKNOWNS).
 Must have MDA.GE.M and M.GE.N.

 B(,) Right hand side(s), with MDB the actual first
 MDB,NB dimension of B in the calling program. NB is the
 number of M by 1 right hand sides. Must have
 MDB.GE.M. If NB = 0, B is never accessed.

 **
 * *
 * Note - Use of RE and AE are what make this *
 * code significantly different from *
 * other linear least squares solvers. *
 * However, the inexperienced user is *
 * advised to set RE=0.,AE=0.,KEY=0. *
 * *
 **
 RE(),AE(),KEY
 RE() RE() is a vector of length N such that RE(I) is
 the maximum relative uncertainty in column I of

SLATEC3 (DACOSH through DS2Y) - 350

 the matrix A. The values of RE() must be between
 0 and 1. A minimum of 10*machine precision will
 be enforced.

 AE() AE() is a vector of length N such that AE(I) is
 the maximum absolute uncertainty in column I of
 the matrix A. The values of AE() must be greater
 than or equal to 0.

 KEY For ease of use, RE and AE may be input as either
 vectors or scalars. If a scalar is input, the algo-
 rithm will use that value for each column of A.
 The parameter key indicates whether scalars or
 vectors are being input.
 KEY=0 RE scalar AE scalar
 KEY=1 RE vector AE scalar
 KEY=2 RE scalar AE vector
 KEY=3 RE vector AE vector

 MODE The integer mode indicates how the routine
 is to react if rank deficiency is detected.
 If MODE = 0 return immediately, no solution
 1 compute truncated solution
 2 compute minimal length solution
 The inexperienced user is advised to set MODE=0

 NP The first NP columns of A will not be interchanged
 with other columns even though the pivot strategy
 would suggest otherwise.
 The inexperienced user is advised to set NP=0.

 WORK() A real work array dimensioned 5*N. However, if
 RE or AE have been specified as vectors, dimension
 WORK 4*N. If both RE and AE have been specified
 as vectors, dimension WORK 3*N.

 LW Actual dimension of WORK

 IWORK() Integer work array dimensioned at least N+M.

 LIW Actual dimension of IWORK.

 INFO Is a flag which provides for the efficient
 solution of subsequent problems involving the
 same A but different B.
 If INFO = 0 original call
 INFO = 1 subsequent calls
 On subsequent calls, the user must supply A, KRANK,
 LW, IWORK, LIW, and the first 2*N locations of WORK
 as output by the original call to DLLSIA. MODE must
 be equal to the value of MODE in the original call.
 If MODE.LT.2, only the first N locations of WORK
 are accessed. AE, RE, KEY, and NP are not accessed.

 Output..All TYPE REAL variable are DOUBLE PRECISION

 A(,) Contains the upper triangular part of the reduced
 matrix and the transformation information. It togeth
 with the first N elements of WORK (see below)
 completely specify the QR factorization of A.

SLATEC3 (DACOSH through DS2Y) - 351

 B(,) Contains the N by NB solution matrix for X.

 KRANK,KSURE The numerical rank of A, based upon the relative
 and absolute bounds on uncertainty, is bounded
 above by KRANK and below by KSURE. The algorithm
 returns a solution based on KRANK. KSURE provides
 an indication of the precision of the rank.

 RNORM() Contains the Euclidean length of the NB residual
 vectors B(I)-AX(I), I=1,NB.

 WORK() The first N locations of WORK contain values
 necessary to reproduce the Householder
 transformation.

 IWORK() The first N locations contain the order in
 which the columns of A were used. The next
 M locations contain the order in which the
 rows of A were used.

 INFO Flag to indicate status of computation on completion
 -1 Parameter error(s)
 0 - Rank deficient, no solution
 1 - Rank deficient, truncated solution
 2 - Rank deficient, minimal length solution
 3 - Numerical rank 0, zero solution
 4 - Rank .LT. NP
 5 - Full rank

 ***REFERENCES T. Manteuffel, An interval analysis approach to rank
 determination in linear least squares problems,
 Report SAND80-0655, Sandia Laboratories, June 1980.
 ***ROUTINES CALLED D1MACH, DU11LS, DU12LS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 810801 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Fixed an error message. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 352

DLLTI2

 SUBROUTINE DLLTI2 (N, B, X, NEL, IEL, JEL, EL, DINV)
 ***BEGIN PROLOGUE DLLTI2
 ***PURPOSE SLAP Backsolve routine for LDL' Factorization.
 Routine to solve a system of the form L*D*L' X = B,
 where L is a unit lower triangular matrix and D is a
 diagonal matrix and ' means transpose.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SLLTI2-S, DLLTI2-D)
 ***KEYWORDS INCOMPLETE FACTORIZATION, ITERATIVE PRECONDITION, SLAP,
 SPARSE, SYMMETRIC LINEAR SYSTEM SOLVE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NEL, IEL(NEL), JEL(NEL)
 DOUBLE PRECISION B(N), X(N), EL(NEL), DINV(N)

 CALL DLLTI2(N, B, X, NEL, IEL, JEL, EL, DINV)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right hand side vector.
 X :OUT Double Precision X(N).
 Solution to L*D*L' x = b.
 NEL :IN Integer.
 Number of non-zeros in the EL array.
 IEL :IN Integer IEL(NEL).
 JEL :IN Integer JEL(NEL).
 EL :IN Double Precision EL(NEL).
 IEL, JEL, EL contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in
 SLAP Row format. The diagonal of ones *IS* stored. This
 structure can be set up by the DS2LT routine. See the
 "Description", below for more details about the SLAP Row
 format.
 DINV :IN Double Precision DINV(N).
 Inverse of the diagonal matrix D.

 *Description:
 This routine is supplied with the SLAP package as a routine
 to perform the MSOLVE operation in the SCG iteration routine
 for the driver routine DSICCG. It must be called via the
 SLAP MSOLVE calling sequence convention interface routine
 DSLLI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 IEL, JEL, EL should contain the unit lower triangular factor

SLATEC3 (DACOSH through DS2Y) - 353

 of the incomplete decomposition of the A matrix stored in
 SLAP Row format. This IC factorization can be computed by
 the DSICS routine. The diagonal (which is all one's) is
 stored.

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the
 double precision array A. In other words, for each row in
 the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going across the row (except the
 diagonal) in order. The JA array holds the column index for
 each non-zero. The IA array holds the offsets into the JA,
 A arrays for the beginning of each row. That is,
 JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
 th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 are the last elements of the IROW-th row. Note that we
 always have IA(N+1) = NELT+1, where N is the number of rows
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP Row format the "inner loop" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO DSICCG, DSICS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 354

DLNGAM

 DOUBLE PRECISION FUNCTION DLNGAM (X)
 ***BEGIN PROLOGUE DLNGAM
 ***PURPOSE Compute the logarithm of the absolute value of the Gamma
 function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE DOUBLE PRECISION (ALNGAM-S, DLNGAM-D, CLNGAM-C)
 ***KEYWORDS ABSOLUTE VALUE, COMPLETE GAMMA FUNCTION, FNLIB, LOGARITHM,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DLNGAM(X) calculates the double precision logarithm of the
 absolute value of the Gamma function for double precision
 argument X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9LGMC, DGAMMA, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 355

DLNREL

 DOUBLE PRECISION FUNCTION DLNREL (X)
 ***BEGIN PROLOGUE DLNREL
 ***PURPOSE Evaluate ln(1+X) accurate in the sense of relative error.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4B
 ***TYPE DOUBLE PRECISION (ALNREL-S, DLNREL-D, CLNREL-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, FNLIB, LOGARITHM
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DLNREL(X) calculates the double precision natural logarithm of
 (1.0+X) for double precision argument X. This routine should
 be used when X is small and accurate to calculate the logarithm
 accurately (in the relative error sense) in the neighborhood
 of 1.0.

 Series for ALNR on the interval -3.75000E-01 to 3.75000E-01
 with weighted error 6.35E-32
 log weighted error 31.20
 significant figures required 30.93
 decimal places required 32.01

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 356

DLPDOC

 SUBROUTINE DLPDOC
 ***BEGIN PROLOGUE DLPDOC
 ***PURPOSE Sparse Linear Algebra Package Version 2.0.2 Documentation.
 Routines to solve large sparse symmetric and nonsymmetric
 positive definite linear systems, Ax = b, using precondi-
 tioned iterative methods.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4, Z
 ***TYPE DOUBLE PRECISION (SLPDOC-S, DLPDOC-D)
 ***KEYWORDS BICONJUGATE GRADIENT SQUARED, DOCUMENTATION,
 GENERALIZED MINIMUM RESIDUAL, ITERATIVE IMPROVEMENT,
 NORMAL EQUATIONS, ORTHOMIN,
 PRECONDITIONED CONJUGATE GRADIENT, SLAP,
 SPARSE ITERATIVE METHODS
 ***AUTHOR Seager, Mark. K., (LLNL)
 User Systems Division
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550
 (FTS) 543-3141, (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 The
 Sparse Linear Algebra Package
 Double Precision Routines

 @@@@ @ @@ @@@@
 @ @ @ @ @ @ @
 @ @ @ @ @ @
 @@@@ @ @ @ @@@@
 @ @ @@@@@ @
 @ @ @ @ @ @
 @@@@ @@@@@ @ @ @

 @ @ @@@@ @@@
 @ @ @ @ @ @
 @ @ @@@@ @ @ @ @ @ @
 @ @ @ @ @ @ @@@ @ @ @
 @ @ @@@@@ @ @ @ @ @
 @ @ @ @ @ @@ @ @
 @@ @@@@ @ @@@@@ @@ @@@

 ===
 ========================== Introduction =========================
 ===
 This package was originally derived from a set of iterative
 routines written by Anne Greenbaum, as announced in "Routines
 for Solving Large Sparse Linear Systems", Tentacle, Lawrence
 Livermore National Laboratory, Livermore Computing Center
 (January 1986), pp 15-21.

 This document contains the specifications for the SLAP Version
 2.0 package, a Fortran 77 package for the solution of large
 sparse linear systems, Ax = b, via preconditioned iterative
 methods. Included in this package are "core" routines to do

SLATEC3 (DACOSH through DS2Y) - 357

 Iterative Refinement (Jacobi's method), Conjugate Gradient,
 Conjugate Gradient on the normal equations, AA'y = b, (where x =
 A'y and A' denotes the transpose of A), BiConjugate Gradient,
 BiConjugate Gradient Squared, Orthomin and Generalized Minimum
 Residual Iteration. These "core" routines do not require a
 "fixed" data structure for storing the matrix A and the
 preconditioning matrix M. The user is free to choose any
 structure that facilitates efficient solution of the problem at
 hand. The drawback to this approach is that the user must also
 supply at least two routines (MATVEC and MSOLVE, say). MATVEC
 must calculate, y = Ax, given x and the user's data structure for
 A. MSOLVE must solve, r = Mz, for z (*NOT* r) given r and the
 user's data structure for M (or its inverse). The user should
 choose M so that inv(M)*A is approximately the identity and the
 solution step r = Mz is "easy" to solve. For some of the "core"
 routines (Orthomin, BiConjugate Gradient and Conjugate Gradient
 on the normal equations) the user must also supply a matrix
 transpose times vector routine (MTTVEC, say) and (possibly,
 depending on the "core" method) a routine that solves the
 transpose of the preconditioning step (MTSOLV, say).
 Specifically, MTTVEC is a routine which calculates y = A'x, given
 x and the user's data structure for A (A' is the transpose of A).
 MTSOLV is a routine which solves the system r = M'z for z given r
 and the user's data structure for M.

 This process of writing the matrix vector operations can be time
 consuming and error prone. To alleviate these problems we have
 written drivers for the "core" methods that assume the user
 supplies one of two specific data structures (SLAP Triad and SLAP
 Column format), see below. Utilizing these data structures we
 have augmented each "core" method with two preconditioners:
 Diagonal Scaling and Incomplete Factorization. Diagonal scaling
 is easy to implement, vectorizes very well and for problems that
 are not too ill-conditioned reduces the number of iterations
 enough to warrant its use. On the other hand, an Incomplete
 factorization (Incomplete Cholesky for symmetric systems and
 Incomplete LU for nonsymmetric systems) may take much longer to
 calculate, but it reduces the iteration count (for most problems)
 significantly. Our implementations of IC and ILU vectorize for
 machines with hardware gather scatter, but the vector lengths can
 be quite short if the number of non-zeros in a column is not
 large.

 ===
 ==================== Supplied Data Structures ===================
 ===
 The following describes the data structures supplied with the
 package: SLAP Triad and Column formats.

 ====================== S L A P Triad format =====================

 In the SLAP Triad format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of length
 NELT, where NELT is the number of non-zeros in the matrix:
 (IA(NELT), JA(NELT), A(NELT)). If the matrix is symmetric then
 one need only store the lower triangle (including the diagonal)
 and NELT would be the corresponding number of non-zeros stored.
 For each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding location

SLATEC3 (DACOSH through DS2Y) - 358

 of the A array. This is an extremely easy data structure to
 generate. On the other hand, it is not very efficient on vector
 computers for the iterative solution of linear systems. Hence,
 SLAP changes this input data structure to the SLAP Column format
 for the iteration (but does not change it back).

 Here is an example of the SLAP Triad storage format for a
 nonsymmetric 5x5 Matrix. NELT=11. Recall that the entries may
 appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ====================== S L A P Column format ====================

 In the SLAP Column format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear first
 in each "column") and are stored in the double precision array A.
 In other words, for each column in the matrix first put the
 diagonal entry in A. Then put in the other non-zero elements
 going down the column (except the diagonal) in order. The IA
 array holds the row index for each non-zero. The JA array holds
 the offsets into the IA, A arrays for the beginning of each
 column. That is, IA(JA(ICOL)), A(JA(ICOL)) are the first elements
 of the ICOL-th column in IA and A, and IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) are the last elements of the ICOL-th column. Note
 that we always have JA(N+1) = NELT+1, where N is the number of
 columns in the matrix and NELT is the number of non-zeros in the
 matrix. If the matrix is symmetric one need only store the lower
 triangle (including the diagonal) and NELT would be the corre-
 sponding number of non-zeros stored.

 Here is an example of the SLAP Column storage format for a
 nonsymmetric 5x5 Matrix (in the A and IA arrays '|' denotes the
 end of a column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ===
 ====================== Which Method To Use ======================
 ===

 BACKGROUND
 In solving a large sparse linear system Ax = b using an iterative
 method, it is not necessary to actually store the matrix A.
 Rather, what is needed is a procedure for multiplying the matrix
 A times a given vector y to obtain the matrix-vector product, Ay.
 SLAP has been written to take advantage of this fact. The higher
 level routines in the package require storage only of the non-zero

SLATEC3 (DACOSH through DS2Y) - 359

 elements of A (and their positions), and even this can be
 avoided, if the user writes his own subroutine for multiplying
 the matrix times a vector and calls the lower-level iterative
 routines in the package.

 If the matrix A is ill-conditioned, then most iterative methods
 will be slow to converge (if they converge at all!). To improve
 the convergence rate, one may use a "matrix splitting," or,
 "preconditioning matrix," say, M. It is then necessary to solve,
 at each iteration, a linear system with coefficient matrix M. A
 good preconditioner M should have two properties: (1) M should
 "approximate" A, in the sense that the matrix inv(M)*A (or some
 variant thereof) is better conditioned than the original matrix
 A; and (2) linear systems with coefficient matrix M should be
 much easier to solve than the original system with coefficient
 matrix A. Preconditioning routines in the SLAP package are
 separate from the iterative routines, so that any of the
 preconditioners provided in the package, or one that the user
 codes himself, can be used with any of the iterative routines.

 CHOICE OF PRECONDITIONER
 If you willing to live with either the SLAP Triad or Column
 matrix data structure you can then choose one of two types of
 preconditioners to use: diagonal scaling or incomplete
 factorization. To choose between these two methods requires
 knowing something about the computer you're going to run these
 codes on and how well incomplete factorization approximates the
 inverse of your matrix.

 Let us suppose you have a scalar machine. Then, unless the
 incomplete factorization is very, very poor this is *GENERALLY*
 the method to choose. It will reduce the number of iterations
 significantly and is not all that expensive to compute. So if
 you have just one linear system to solve and "just want to get
 the job done" then try incomplete factorization first. If you
 are thinking of integrating some SLAP iterative method into your
 favorite "production code" then try incomplete factorization
 first, but also check to see that diagonal scaling is indeed
 slower for a large sample of test problems.

 Let us now suppose you have a vector computer with hardware
 gather/scatter support (Cray X-MP, Y-MP, SCS-40 or Cyber 205, ETA
 10, ETA Piper, Convex C-1, etc.). Then it is much harder to
 choose between the two methods. The versions of incomplete
 factorization in SLAP do in fact vectorize, but have short vector
 lengths and the factorization step is relatively more expensive.
 Hence, for most problems (i.e., unless your problem is ill
 conditioned, sic!) diagonal scaling is faster, with its very
 fast set up time and vectorized (with long vectors)
 preconditioning step (even though it may take more iterations).
 If you have several systems (or right hand sides) to solve that
 can utilize the same preconditioner then the cost of the
 incomplete factorization can be amortized over these several
 solutions. This situation gives more advantage to the incomplete
 factorization methods. If you have a vector machine without
 hardware gather/scatter (Cray 1, Cray 2 & Cray 3) then the
 advantages for incomplete factorization are even less.

 If you're trying to shoehorn SLAP into your favorite "production
 code" and can not easily generate either the SLAP Triad or Column

SLATEC3 (DACOSH through DS2Y) - 360

 format then you are left to your own devices in terms of
 preconditioning. Also, you may find that the preconditioners
 supplied with SLAP are not sufficient for your problem. In this
 situation we would recommend that you talk with a numerical
 analyst versed in iterative methods about writing other
 preconditioning subroutines (e.g., polynomial preconditioning,
 shifted incomplete factorization, SOR or SSOR iteration). You
 can always "roll your own" by using the "core" iterative methods
 and supplying your own MSOLVE and MATVEC (and possibly MTSOLV and
 MTTVEC) routines.

 SYMMETRIC SYSTEMS
 If your matrix is symmetric then you would want to use one of the
 symmetric system solvers. If your system is also positive
 definite, (Ax,x) (Ax dot product with x) is positive for all
 non-zero vectors x, then use Conjugate Gradient (DCG, DSDCG,
 DSICSG). If you're not sure it's SPD (symmetric and Positive
 Definite) then try DCG anyway and if it works, fine. If you're
 sure your matrix is not positive definite then you may want to
 try the iterative refinement methods (DIR) or the GMRES code
 (DGMRES) if DIR converges too slowly.

 NONSYMMETRIC SYSTEMS
 This is currently an area of active research in numerical
 analysis and there are new strategies being developed.
 Consequently take the following advice with a grain of salt. If
 you matrix is positive definite, (Ax,x) (Ax dot product with x
 is positive for all non-zero vectors x), then you can use any of
 the methods for nonsymmetric systems (Orthomin, GMRES,
 BiConjugate Gradient, BiConjugate Gradient Squared and Conjugate
 Gradient applied to the normal equations). If your system is not
 too ill conditioned then try BiConjugate Gradient Squared (BCGS)
 or GMRES (DGMRES). Both of these methods converge very quickly
 and do not require A' or M' (' denotes transpose) information.
 DGMRES does require some additional storage, though. If the
 system is very ill conditioned or nearly positive indefinite
 ((Ax,x) is positive, but may be very small), then GMRES should
 be the first choice, but try the other methods if you have to
 fine tune the solution process for a "production code". If you
 have a great preconditioner for the normal equations (i.e., M is
 an approximation to the inverse of AA' rather than just A) then
 this is not a bad route to travel. Old wisdom would say that the
 normal equations are a disaster (since it squares the condition
 number of the system and DCG convergence is linked to this number
 of infamy), but some preconditioners (like incomplete
 factorization) can reduce the condition number back below that of
 the original system.

 ===
 ======================= Naming Conventions ======================
 ===
 SLAP iterative methods, matrix vector and preconditioner
 calculation routines follow a naming convention which, when
 understood, allows one to determine the iterative method and data
 structure(s) used. The subroutine naming convention takes the
 following form:
 P[S][M]DESC
 where
 P stands for the precision (or data type) of the routine and
 is required in all names,

SLATEC3 (DACOSH through DS2Y) - 361

 S denotes whether or not the routine requires the SLAP Triad
 or Column format (it does if the second letter of the name
 is S and does not otherwise),
 M stands for the type of preconditioner used (only appears
 in drivers for "core" routines), and
 DESC is some number of letters describing the method or purpose
 of the routine. The following is a list of the "DESC"
 fields for iterative methods and their meaning:
 BCG,BC: BiConjugate Gradient
 CG: Conjugate Gradient
 CGN,CN: Conjugate Gradient on the Normal equations
 CGS,CS: biConjugate Gradient Squared
 GMRES,GMR,GM: Generalized Minimum RESidual
 IR,R: Iterative Refinement
 JAC: JACobi's method
 GS: Gauss-Seidel
 OMN,OM: OrthoMiN

 In the double precision version of SLAP, all routine names start
 with a D. The brackets around the S and M designate that these
 fields are optional.

 Here are some examples of the routines:
 1) DBCG: Double precision BiConjugate Gradient "core" routine.
 One can deduce that this is a "core" routine, because the S and
 M fields are missing and BiConjugate Gradient is an iterative
 method.
 2) DSDBCG: Double precision, SLAP data structure BCG with Diagonal
 scaling.
 3) DSLUBC: Double precision, SLAP data structure BCG with incom-
 plete LU factorization as the preconditioning.
 4) DCG: Double precision Conjugate Gradient "core" routine.
 5) DSDCG: Double precision, SLAP data structure Conjugate Gradient
 with Diagonal scaling.
 6) DSICCG: Double precision, SLAP data structure Conjugate Gra-
 dient with Incomplete Cholesky factorization preconditioning.

 ===
 ===================== USER CALLABLE ROUTINES ====================
 ===
 The following is a list of the "user callable" SLAP routines and
 their one line descriptions. The headers denote the file names
 where the routines can be found, as distributed for UNIX systems.

 Note: Each core routine, DXXX, has a corresponding stop routine,
 ISDXXX. If the stop routine does not have the specific stop
 test the user requires (e.g., weighted infinity norm), then
 the user should modify the source for ISDXXX accordingly.

 ============================= dir.f =============================
 DIR: Preconditioned Iterative Refinement Sparse Ax = b Solver.
 DSJAC: Jacobi's Method Iterative Sparse Ax = b Solver.
 DSGS: Gauss-Seidel Method Iterative Sparse Ax = b Solver.
 DSILUR: Incomplete LU Iterative Refinement Sparse Ax = b Solver.

 ============================= dcg.f =============================
 DCG: Preconditioned Conjugate Gradient Sparse Ax=b Solver.
 DSDCG: Diagonally Scaled Conjugate Gradient Sparse Ax=b Solver.
 DSICCG: Incomplete Cholesky Conjugate Gradient Sparse Ax=b Solver.

SLATEC3 (DACOSH through DS2Y) - 362

 ============================= dcgn.f ============================
 DCGN: Preconditioned CG Sparse Ax=b Solver for Normal Equations.
 DSDCGN: Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
 DSLUCN: Incomplete LU CG Sparse Ax=b Solver for Normal Equations.

 ============================= dbcg.f ============================
 DBCG: Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
 DSDBCG: Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
 DSLUBC: Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.

 ============================= dcgs.f ============================
 DCGS: Preconditioned BiConjugate Gradient Squared Ax=b Solver.
 DSDCGS: Diagonally Scaled CGS Sparse Ax=b Solver.
 DSLUCS: Incomplete LU BiConjugate Gradient Squared Ax=b Solver.

 ============================= domn.f ============================
 DOMN: Preconditioned Orthomin Sparse Iterative Ax=b Solver.
 DSDOMN: Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
 DSLUOM: Incomplete LU Orthomin Sparse Iterative Ax=b Solver.

 ============================ dgmres.f ===========================
 DGMRES: Preconditioned GMRES Iterative Sparse Ax=b Solver.
 DSDGMR: Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
 DSLUGM: Incomplete LU GMRES Iterative Sparse Ax=b Solver.

 ============================ dmset.f ============================
 The following routines are used to set up preconditioners.

 DSDS: Diagonal Scaling Preconditioner SLAP Set Up.
 DSDSCL: Diagonally Scales/Unscales a SLAP Column Matrix.
 DSD2S: Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up.
 DS2LT: Lower Triangle Preconditioner SLAP Set Up.
 DSICS: Incomplete Cholesky Decomp. Preconditioner SLAP Set Up.
 DSILUS: Incomplete LU Decomposition Preconditioner SLAP Set Up.

 ============================ dmvops.f ===========================
 Most of the incomplete factorization (LL' and LDU) solvers
 in this file require an intermediate routine to translate
 from the SLAP MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK,
 IWORK) calling convention to the calling sequence required
 by the solve routine. This generally is accomplished by
 fishing out pointers to the preconditioner (stored in RWORK)
 from the IWORK array and then making a call to the routine
 that actually does the backsolve.

 DSMV: SLAP Column Format Sparse Matrix Vector Product.
 DSMTV: SLAP Column Format Sparse Matrix (transpose) Vector Prod.
 DSDI: Diagonal Matrix Vector Multiply.
 DSLI: SLAP MSOLVE for Lower Triangle Matrix (set up for DSLI2).
 DSLI2: Lower Triangle Matrix Backsolve.
 DSLLTI: SLAP MSOLVE for LDL' (IC) Fact. (set up for DLLTI2).
 DLLTI2: Backsolve routine for LDL' Factorization.
 DSLUI: SLAP MSOLVE for LDU Factorization (set up for DSLUI2).
 DSLUI2: SLAP Backsolve for LDU Factorization.
 DSLUTI: SLAP MTSOLV for LDU Factorization (set up for DSLUI4).
 DSLUI4: SLAP Backsolve for LDU Factorization.
 DSMMTI: SLAP MSOLVE for LDU Fact of Normal Eq (set up for DSMMI2).
 DSMMI2: SLAP Backsolve for LDU Factorization of Normal Equations.

SLATEC3 (DACOSH through DS2Y) - 363

 =========================== dlaputil.f ==========================
 The following utility routines are useful additions to SLAP.

 DBHIN: Read Sparse Linear System in the Boeing/Harwell Format.
 DCHKW: SLAP WORK/IWORK Array Bounds Checker.
 DCPPLT: Printer Plot of SLAP Column Format Matrix.
 DS2Y: SLAP Triad to SLAP Column Format Converter.
 QS2I1D: Quick Sort Integer array, moving integer and DP arrays.
 (Used by DS2Y.)
 DTIN: Read in SLAP Triad Format Linear System.
 DTOUT: Write out SLAP Triad Format Linear System.

 ***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 -----(This produced Version 2.0.1.)-----
 891003 Rearranged list of user callable routines to agree with
 order in source deck. (FNF)
 891004 Updated reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 -----(This produced Version 2.0.2.)-----
 910506 Minor improvements to prologue. (FNF)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 921019 Improved one-line descriptions, reordering some. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 364

DLSEI

 SUBROUTINE DLSEI (W, MDW, ME, MA, MG, N, PRGOPT, X, RNORME,
 + RNORML, MODE, WS, IP)
 ***BEGIN PROLOGUE DLSEI
 ***PURPOSE Solve a linearly constrained least squares problem with
 equality and inequality constraints, and optionally compute
 a covariance matrix.
 ***LIBRARY SLATEC
 ***CATEGORY K1A2A, D9
 ***TYPE DOUBLE PRECISION (LSEI-S, DLSEI-D)
 ***KEYWORDS CONSTRAINED LEAST SQUARES, CURVE FITTING, DATA FITTING,
 EQUALITY CONSTRAINTS, INEQUALITY CONSTRAINTS,
 QUADRATIC PROGRAMMING
 ***AUTHOR Hanson, R. J., (SNLA)
 Haskell, K. H., (SNLA)
 ***DESCRIPTION

 Abstract

 This subprogram solves a linearly constrained least squares
 problem with both equality and inequality constraints, and, if the
 user requests, obtains a covariance matrix of the solution
 parameters.

 Suppose there are given matrices E, A and G of respective
 dimensions ME by N, MA by N and MG by N, and vectors F, B and H of
 respective lengths ME, MA and MG. This subroutine solves the
 linearly constrained least squares problem

 EX = F, (E ME by N) (equations to be exactly
 satisfied)
 AX = B, (A MA by N) (equations to be
 approximately satisfied,
 least squares sense)
 GX .GE. H,(G MG by N) (inequality constraints)

 The inequalities GX .GE. H mean that every component of the
 product GX must be .GE. the corresponding component of H.

 In case the equality constraints cannot be satisfied, a
 generalized inverse solution residual vector length is obtained
 for F-EX. This is the minimal length possible for F-EX.

 Any values ME .GE. 0, MA .GE. 0, or MG .GE. 0 are permitted. The
 rank of the matrix E is estimated during the computation. We call
 this value KRANKE. It is an output parameter in IP(1) defined
 below. Using a generalized inverse solution of EX=F, a reduced
 least squares problem with inequality constraints is obtained.
 The tolerances used in these tests for determining the rank
 of E and the rank of the reduced least squares problem are
 given in Sandia Tech. Rept. SAND-78-1290. They can be
 modified by the user if new values are provided in
 the option list of the array PRGOPT(*).

 The user must dimension all arrays appearing in the call list..
 W(MDW,N+1),PRGOPT(*),X(N),WS(2*(ME+N)+K+(MG+2)*(N+7)),IP(MG+2*N+2)
 where K=MAX(MA+MG,N). This allows for a solution of a range of

SLATEC3 (DACOSH through DS2Y) - 365

 problems in the given working space. The dimension of WS(*)
 given is a necessary overestimate. Once a particular problem
 has been run, the output parameter IP(3) gives the actual
 dimension required for that problem.

 The parameters for DLSEI() are

 Input.. All TYPE REAL variables are DOUBLE PRECISION

 W(*,*),MDW, The array W(*,*) is doubly subscripted with
 ME,MA,MG,N first dimensioning parameter equal to MDW.
 For this discussion let us call M = ME+MA+MG. Then
 MDW must satisfy MDW .GE. M. The condition
 MDW .LT. M is an error.

 The array W(*,*) contains the matrices and vectors

 (E F)
 (A B)
 (G H)

 in rows and columns 1,...,M and 1,...,N+1
 respectively.

 The integers ME, MA, and MG are the
 respective matrix row dimensions
 of E, A and G. Each matrix has N columns.

 PRGOPT(*) This real-valued array is the option vector.
 If the user is satisfied with the nominal
 subprogram features set

 PRGOPT(1)=1 (or PRGOPT(1)=1.0)

 Otherwise PRGOPT(*) is a linked list consisting of
 groups of data of the following form

 LINK
 KEY
 DATA SET

 The parameters LINK and KEY are each one word.
 The DATA SET can be comprised of several words.
 The number of items depends on the value of KEY.
 The value of LINK points to the first
 entry of the next group of data within
 PRGOPT(*). The exception is when there are
 no more options to change. In that
 case, LINK=1 and the values KEY and DATA SET
 are not referenced. The general layout of
 PRGOPT(*) is as follows.

 ...PRGOPT(1) = LINK1 (link to first entry of next group)
 . PRGOPT(2) = KEY1 (key to the option change)
 . PRGOPT(3) = data value (data value for this change)
 . .
 . .
 . .
 ...PRGOPT(LINK1) = LINK2 (link to the first entry of
 . next group)

SLATEC3 (DACOSH through DS2Y) - 366

 . PRGOPT(LINK1+1) = KEY2 (key to the option change)
 . PRGOPT(LINK1+2) = data value

 . .
 . .
 ...PRGOPT(LINK) = 1 (no more options to change)

 Values of LINK that are nonpositive are errors.
 A value of LINK .GT. NLINK=100000 is also an error.
 This helps prevent using invalid but positive
 values of LINK that will probably extend
 beyond the program limits of PRGOPT(*).
 Unrecognized values of KEY are ignored. The
 order of the options is arbitrary and any number
 of options can be changed with the following
 restriction. To prevent cycling in the
 processing of the option array, a count of the
 number of options changed is maintained.
 Whenever this count exceeds NOPT=1000, an error
 message is printed and the subprogram returns.

 Options..

 KEY=1
 Compute in W(*,*) the N by N
 covariance matrix of the solution variables
 as an output parameter. Nominally the
 covariance matrix will not be computed.
 (This requires no user input.)
 The data set for this option is a single value.
 It must be nonzero when the covariance matrix
 is desired. If it is zero, the covariance
 matrix is not computed. When the covariance matrix
 is computed, the first dimensioning parameter
 of the array W(*,*) must satisfy MDW .GE. MAX(M,N).

 KEY=10
 Suppress scaling of the inverse of the
 normal matrix by the scale factor RNORM**2/
 MAX(1, no. of degrees of freedom). This option
 only applies when the option for computing the
 covariance matrix (KEY=1) is used. With KEY=1 and
 KEY=10 used as options the unscaled inverse of the
 normal matrix is returned in W(*,*).
 The data set for this option is a single value.
 When it is nonzero no scaling is done. When it is
 zero scaling is done. The nominal case is to do
 scaling so if option (KEY=1) is used alone, the
 matrix will be scaled on output.

 KEY=2
 Scale the nonzero columns of the
 entire data matrix.
 (E)
 (A)
 (G)

 to have length one. The data set for this
 option is a single value. It must be
 nonzero if unit length column scaling

SLATEC3 (DACOSH through DS2Y) - 367

 is desired.

 KEY=3
 Scale columns of the entire data matrix
 (E)
 (A)
 (G)

 with a user-provided diagonal matrix.
 The data set for this option consists
 of the N diagonal scaling factors, one for
 each matrix column.

 KEY=4
 Change the rank determination tolerance for
 the equality constraint equations from
 the nominal value of SQRT(DRELPR). This quantity can
 be no smaller than DRELPR, the arithmetic-
 storage precision. The quantity DRELPR is the
 largest positive number such that T=1.+DRELPR
 satisfies T .EQ. 1. The quantity used
 here is internally restricted to be at
 least DRELPR. The data set for this option
 is the new tolerance.

 KEY=5
 Change the rank determination tolerance for
 the reduced least squares equations from
 the nominal value of SQRT(DRELPR). This quantity can
 be no smaller than DRELPR, the arithmetic-
 storage precision. The quantity used
 here is internally restricted to be at
 least DRELPR. The data set for this option
 is the new tolerance.

 For example, suppose we want to change
 the tolerance for the reduced least squares
 problem, compute the covariance matrix of
 the solution parameters, and provide
 column scaling for the data matrix. For
 these options the dimension of PRGOPT(*)
 must be at least N+9. The Fortran statements
 defining these options would be as follows:

 PRGOPT(1)=4 (link to entry 4 in PRGOPT(*))
 PRGOPT(2)=1 (covariance matrix key)
 PRGOPT(3)=1 (covariance matrix wanted)

 PRGOPT(4)=7 (link to entry 7 in PRGOPT(*))
 PRGOPT(5)=5 (least squares equas. tolerance key)
 PRGOPT(6)=... (new value of the tolerance)

 PRGOPT(7)=N+9 (link to entry N+9 in PRGOPT(*))
 PRGOPT(8)=3 (user-provided column scaling key)

 CALL DCOPY (N, D, 1, PRGOPT(9), 1) (Copy the N
 scaling factors from the user array D(*)
 to PRGOPT(9)-PRGOPT(N+8))

 PRGOPT(N+9)=1 (no more options to change)

SLATEC3 (DACOSH through DS2Y) - 368

 The contents of PRGOPT(*) are not modified
 by the subprogram.
 The options for WNNLS() can also be included
 in this array. The values of KEY recognized
 by WNNLS() are 6, 7 and 8. Their functions
 are documented in the usage instructions for
 subroutine WNNLS(). Normally these options
 do not need to be modified when using DLSEI().

 IP(1), The amounts of working storage actually
 IP(2) allocated for the working arrays WS(*) and
 IP(*), respectively. These quantities are
 compared with the actual amounts of storage
 needed by DLSEI(). Insufficient storage
 allocated for either WS(*) or IP(*) is an
 error. This feature was included in DLSEI()
 because miscalculating the storage formulas
 for WS(*) and IP(*) might very well lead to
 subtle and hard-to-find execution errors.

 The length of WS(*) must be at least

 LW = 2*(ME+N)+K+(MG+2)*(N+7)

 where K = max(MA+MG,N)
 This test will not be made if IP(1).LE.0.

 The length of IP(*) must be at least

 LIP = MG+2*N+2
 This test will not be made if IP(2).LE.0.

 Output.. All TYPE REAL variables are DOUBLE PRECISION

 X(*),RNORME, The array X(*) contains the solution parameters
 RNORML if the integer output flag MODE = 0 or 1.
 The definition of MODE is given directly below.
 When MODE = 0 or 1, RNORME and RNORML
 respectively contain the residual vector
 Euclidean lengths of F - EX and B - AX. When
 MODE=1 the equality constraint equations EX=F
 are contradictory, so RNORME .NE. 0. The residual
 vector F-EX has minimal Euclidean length. For
 MODE .GE. 2, none of these parameters is defined.

 MODE Integer flag that indicates the subprogram
 status after completion. If MODE .GE. 2, no
 solution has been computed.

 MODE =

 0 Both equality and inequality constraints
 are compatible and have been satisfied.

 1 Equality constraints are contradictory.
 A generalized inverse solution of EX=F was used
 to minimize the residual vector length F-EX.
 In this sense, the solution is still meaningful.

SLATEC3 (DACOSH through DS2Y) - 369

 2 Inequality constraints are contradictory.

 3 Both equality and inequality constraints
 are contradictory.

 The following interpretation of
 MODE=1,2 or 3 must be made. The
 sets consisting of all solutions
 of the equality constraints EX=F
 and all vectors satisfying GX .GE. H
 have no points in common. (In
 particular this does not say that
 each individual set has no points
 at all, although this could be the
 case.)

 4 Usage error occurred. The value
 of MDW is .LT. ME+MA+MG, MDW is
 .LT. N and a covariance matrix is
 requested, or the option vector
 PRGOPT(*) is not properly defined,
 or the lengths of the working arrays
 WS(*) and IP(*), when specified in
 IP(1) and IP(2) respectively, are not
 long enough.

 W(*,*) The array W(*,*) contains the N by N symmetric
 covariance matrix of the solution parameters,
 provided this was requested on input with
 the option vector PRGOPT(*) and the output
 flag is returned with MODE = 0 or 1.

 IP(*) The integer working array has three entries
 that provide rank and working array length
 information after completion.

 IP(1) = rank of equality constraint
 matrix. Define this quantity
 as KRANKE.

 IP(2) = rank of reduced least squares
 problem.

 IP(3) = the amount of storage in the
 working array WS(*) that was
 actually used by the subprogram.
 The formula given above for the length
 of WS(*) is a necessary overestimate.
 If exactly the same problem matrices
 are used in subsequent executions,
 the declared dimension of WS(*) can
 be reduced to this output value.
 User Designated
 Working Arrays..

 WS(*),IP(*) These are respectively type real
 and type integer working arrays.
 Their required minimal lengths are
 given above.

SLATEC3 (DACOSH through DS2Y) - 370

 ***REFERENCES K. H. Haskell and R. J. Hanson, An algorithm for
 linear least squares problems with equality and
 nonnegativity constraints, Report SAND77-0552, Sandia
 Laboratories, June 1978.
 K. H. Haskell and R. J. Hanson, Selected algorithms for
 the linearly constrained least squares problem - a
 users guide, Report SAND78-1290, Sandia Laboratories,
 August 1979.
 K. H. Haskell and R. J. Hanson, An algorithm for
 linear least squares problems with equality and
 nonnegativity constraints, Mathematical Programming
 21 (1981), pp. 98-118.
 R. J. Hanson and K. H. Haskell, Two algorithms for the
 linearly constrained least squares problem, ACM
 Transactions on Mathematical Software, September 1982.
 ***ROUTINES CALLED D1MACH, DASUM, DAXPY, DCOPY, DDOT, DH12, DLSI,
 DNRM2, DSCAL, DSWAP, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890618 Completely restructured and extensively revised (WRB & RWC)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 900604 DP version created from SP version. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 371

DNBCO

 SUBROUTINE DNBCO (ABE, LDA, N, ML, MU, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE DNBCO
 ***PURPOSE Factor a band matrix using Gaussian elimination and
 estimate the condition number.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE DOUBLE PRECISION (SNBCO-S, DNBCO-D, CNBCO-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
 NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 DNBCO factors a double precision band matrix by Gaussian
 elimination and estimates the condition of the matrix.

 If RCOND is not needed, DNBFA is slightly faster.
 To solve A*X = B , follow DNBCO by DNBSL.
 To compute INVERSE(A)*C , follow DNBCO by DNBSL.
 To compute DETERMINANT(A) , follow DNBCO by DNBDI.

 On Entry

 ABE DOUBLE PRECISION(LDA, NC)
 contains the matrix in band storage. The rows
 of the original matrix are stored in the rows
 of ABE and the diagonals of the original matrix
 are stored in columns 1 through ML+MU+1 of ABE.
 NC must be .GE. 2*ML+MU+1 .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABE.
 LDA must be .GE. N .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABE an upper triangular matrix in band storage
 and the multipliers which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

SLATEC3 (DACOSH through DS2Y) - 372

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z DOUBLE PRECISION(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2
 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.

SLATEC3 (DACOSH through DS2Y) - 373

 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DDOT, DNBFA, DSCAL
 ***REVISION HISTORY (YYMMDD)
 800728 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 374

DNBDI

 SUBROUTINE DNBDI (ABE, LDA, N, ML, MU, IPVT, DET)
 ***BEGIN PROLOGUE DNBDI
 ***PURPOSE Compute the determinant of a band matrix using the factors
 computed by DNBCO or DNBFA.
 ***LIBRARY SLATEC
 ***CATEGORY D3A2
 ***TYPE DOUBLE PRECISION (SNBDI-S, DNBDI-D, CNBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 DNBDI computes the determinant of a band matrix
 using the factors computed by DNBCO or DNBFA.
 If the inverse is needed, use DNBSL N times.

 On Entry

 ABE DOUBLE PRECISION(LDA, NC)
 the output from DNBCO or DNBFA.
 NC must be .GE. 2*ML+MU+1 .

 LDA INTEGER
 the leading dimension of the array ABE .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from DNBCO or DNBFA.

 On Return

 DET DOUBLE PRECISION(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 800728 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 375

DNBFA

 SUBROUTINE DNBFA (ABE, LDA, N, ML, MU, IPVT, INFO)
 ***BEGIN PROLOGUE DNBFA
 ***PURPOSE Factor a band matrix by elimination.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE DOUBLE PRECISION (SNBFA-S, DNBFA-D, CNBFA-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
 NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 DNBFA factors a double precision band matrix by elimination.

 DNBFA is usually called by DNBCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABE DOUBLE PRECISION(LDA, NC)
 contains the matrix in band storage. The rows
 of the original matrix are stored in the rows
 of ABE and the diagonals of the original matrix
 are stored in columns 1 through ML+MU+1 of ABE.
 NC must be .GE. 2*ML+MU+1 .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABE.
 LDA must be .GE. N .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABE an upper triangular matrix in band storage
 and the multipliers which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 =0 normal value
 =K if U(K,K) .EQ. 0.0 . This is not an error

SLATEC3 (DACOSH through DS2Y) - 376

 condition for this subroutine, but it does
 indicate that DNBSL will divide by zero if
 called. Use RCOND in DNBCO for a reliable
 indication of singularity.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2
 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSCAL, DSWAP, IDAMAX
 ***REVISION HISTORY (YYMMDD)
 800728 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 377

DNBFS

 SUBROUTINE DNBFS (ABE, LDA, N, ML, MU, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE DNBFS
 ***PURPOSE Solve a general nonsymmetric banded system of linear
 equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE DOUBLE PRECISION (SNBFS-S, DNBFS-D, CNBFS-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine DNBFS solves a general nonsymmetric banded NxN
 system of double precision real linear equations using
 SLATEC subroutines DNBCO and DNBSL. These are adaptations
 of the LINPACK subroutines DGBCO and DGBSL which require
 a different format for storing the matrix elements. If
 A is an NxN double precision matrix and if X and B are
 double precision N-vectors, then DNBFS solves the equation

 A*X=B.

 A band matrix is a matrix whose nonzero elements are all
 fairly near the main diagonal, specifically A(I,J) = 0
 if I-J is greater than ML or J-I is greater than
 MU . The integers ML and MU are called the lower and upper
 band widths and M = ML+MU+1 is the total band width.
 DNBFS uses less time and storage than the corresponding
 program for general matrices (DGEFS) if 2*ML+MU .LT. N .

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to find the
 solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N and IWORK must not have been altered by the user follow-
 ing factorization (ITASK=1). IND will not be changed by DNBFS
 in this case.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2

SLATEC3 (DACOSH through DS2Y) - 378

 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 Argument Description ***

 ABE DOUBLE PRECISION(LDA,NC)
 on entry, contains the matrix in band storage as
 described above. NC must not be less than
 2*ML+MU+1 . The user is cautioned to specify NC
 with care since it is not an argument and cannot
 be checked by DNBFS. The rows of the original
 matrix are stored in the rows of ABE and the
 diagonals of the original matrix are stored in
 columns 1 through ML+MU+1 of ABE .
 on return, contains an upper triangular matrix U and
 the multipliers necessary to construct a matrix L
 so that A=L*U.
 LDA INTEGER
 the leading dimension of array ABE. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater
 than or equal to 1 . (terminal error message IND=-2)
 ML INTEGER
 the number of diagonals below the main diagonal.
 ML must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-5)
 MU INTEGER
 the number of diagonals above the main diagonal.
 MU must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-6)
 V DOUBLE PRECISION(N)
 on entry, the singly subscripted array(vector) of di-

SLATEC3 (DACOSH through DS2Y) - 379

 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 If ITASK=1, the matrix A is factored and then the
 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A and IWORK.
 If ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT. 0 See error message corresponding to IND below.
 WORK DOUBLE PRECISION(N)
 a singly subscripted array of dimension at least N.
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal The matrix A is computationally singular.
 A solution has not been computed.
 IND=-5 terminal ML is less than zero or is greater than
 or equal to N .
 IND=-6 terminal MU is less than zero or is greater than
 or equal to N .
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 Note- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED D1MACH, DNBCO, DNBSL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800812 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls, changed GOTOs to
 IF-THEN-ELSEs. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 380

DNBSL

 SUBROUTINE DNBSL (ABE, LDA, N, ML, MU, IPVT, B, JOB)
 ***BEGIN PROLOGUE DNBSL
 ***PURPOSE Solve a real band system using the factors computed by
 DNBCO or DNBFA.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE DOUBLE PRECISION (SNBSL-S, DNBSL-D, CNBSL-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC, SOLVE
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 DNBSL solves the double precision band system
 A * X = B or TRANS(A) * X = B
 using the factors computed by DNBCO or DNBFA.

 On Entry

 ABE DOUBLE PRECISION(LDA, NC)
 the output from DNBCO or DNBFA.
 NC must be .GE. 2*ML+MU+1 .

 LDA INTEGER
 the leading dimension of the array ABE .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from DNBCO or DNBFA.

 B DOUBLE PRECISION(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B .
 = nonzero to solve TRANS(A)*X = B , where
 TRANS(A) is the transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically this indicates singularity
 but it is often caused by improper arguments or improper
 setting of LDA. It will not occur if the subroutines are
 called correctly and if DNBCO has set RCOND .GT. 0.0
 or DNBFA has set INFO .EQ. 0 .

SLATEC3 (DACOSH through DS2Y) - 381

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL DNBCO(ABE,LDA,N,ML,MU,IPVT,RCOND,Z)
 IF (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL DNBSL(ABE,LDA,N,ML,MU,IPVT,C(1,J),0)
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 800728 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 382

DNLS1

 SUBROUTINE DNLS1 (FCN, IOPT, M, N, X, FVEC, FJAC, LDFJAC, FTOL,
 XTOL, GTOL, MAXFEV, EPSFCN, DIAG, MODE, FACTOR, NPRINT, INFO,
 + NFEV, NJEV, IPVT, QTF, WA1, WA2, WA3, WA4)
 ***BEGIN PROLOGUE DNLS1
 ***PURPOSE Minimize the sum of the squares of M nonlinear functions
 in N variables by a modification of the Levenberg-Marquardt
 algorithm.
 ***LIBRARY SLATEC
 ***CATEGORY K1B1A1, K1B1A2
 ***TYPE DOUBLE PRECISION (SNLS1-S, DNLS1-D)
 ***KEYWORDS LEVENBERG-MARQUARDT, NONLINEAR DATA FITTING,
 NONLINEAR LEAST SQUARES
 ***AUTHOR Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 1. Purpose.

 The purpose of DNLS1 is to minimize the sum of the squares of M
 nonlinear functions in N variables by a modification of the
 Levenberg-Marquardt algorithm. The user must provide a subrou-
 tine which calculates the functions. The user has the option
 of how the Jacobian will be supplied. The user can supply the
 full Jacobian, or the rows of the Jacobian (to avoid storing
 the full Jacobian), or let the code approximate the Jacobian by
 forward-differencing. This code is the combination of the
 MINPACK codes (Argonne) LMDER, LMDIF, and LMSTR.

 2. Subroutine and Type Statements.

 SUBROUTINE DNLS1(FCN,IOPT,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,
 * GTOL,MAXFEV,EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO
 * ,NFEV,NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)
 INTEGER IOPT,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
 INTEGER IPVT(N)
 DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR
 DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
 * WA1(N),WA2(N),WA3(N),WA4(M)

 3. Parameters.

 Parameters designated as input parameters must be specified on
 entry to DNLS1 and are not changed on exit, while parameters
 designated as output parameters need not be specified on entry
 and are set to appropriate values on exit from DNLS1.

 FCN is the name of the user-supplied subroutine which calculate
 the functions. If the user wants to supply the Jacobian
 (IOPT=2 or 3), then FCN must be written to calculate the
 Jacobian, as well as the functions. See the explanation
 of the IOPT argument below.
 If the user wants the iterates printed (NPRINT positive), then
 FCN must do the printing. See the explanation of NPRINT
 below. FCN must be declared in an EXTERNAL statement in the
 calling program and should be written as follows.

SLATEC3 (DACOSH through DS2Y) - 383

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 INTEGER IFLAG,LDFJAC,M,N
 DOUBLE PRECISION X(N),FVEC(M)

 FJAC and LDFJAC may be ignored , if IOPT=1.
 DOUBLE PRECISION FJAC(LDFJAC,N) , if IOPT=2.
 DOUBLE PRECISION FJAC(N) , if IOPT=3.

 If IFLAG=0, the values in X and FVEC are available
 for printing. See the explanation of NPRINT below.
 IFLAG will never be zero unless NPRINT is positive.
 The values of X and FVEC must not be changed.
 RETURN

 If IFLAG=1, calculate the functions at X and return
 this vector in FVEC.
 RETURN

 If IFLAG=2, calculate the full Jacobian at X and return
 this matrix in FJAC. Note that IFLAG will never be 2 unless
 IOPT=2. FVEC contains the function values at X and must
 not be altered. FJAC(I,J) must be set to the derivative
 of FVEC(I) with respect to X(J).
 RETURN

 If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
 and return this vector in FJAC. Note that IFLAG will
 never be 3 unless IOPT=3. FVEC contains the function
 values at X and must not be altered. FJAC(J) must be
 set to the derivative of FVEC(LDFJAC) with respect to X(J).
 RETURN

 END

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of DNLS1. In this case, set
 IFLAG to a negative integer.

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=2 or 3, then the user must supply the
 Jacobian, as well as the function values, through the
 subroutine FCN. If IOPT=2, the user supplies the full
 Jacobian with one call to FCN. If IOPT=3, the user supplies
 one row of the Jacobian with each call. (In this manner,
 storage can be saved because the full Jacobian is not stored.)
 If IOPT=1, the code will approximate the Jacobian by forward
 differencing.

 M is a positive integer input variable set to the number of
 functions.

 N is a positive integer input variable set to the number of
 variables. N must not exceed M.

 X is an array of length N. On input, X must contain an initial
 estimate of the solution vector. On output, X contains the

SLATEC3 (DACOSH through DS2Y) - 384

 final estimate of the solution vector.

 FVEC is an output array of length M which contains the functions
 evaluated at the output X.

 FJAC is an output array. For IOPT=1 and 2, FJAC is an M by N
 array. For IOPT=3, FJAC is an N by N array. The upper N by N
 submatrix of FJAC contains an upper triangular matrix R with
 diagonal elements of nonincreasing magnitude such that

 T T T
 P *(JAC *JAC)*P = R *R,

 where P is a permutation matrix and JAC is the final calcu-
 lated Jacobian. Column J of P is column IPVT(J) (see below)
 of the identity matrix. The lower part of FJAC contains
 information generated during the computation of R.

 LDFJAC is a positive integer input variable which specifies
 the leading dimension of the array FJAC. For IOPT=1 and 2,
 LDFJAC must not be less than M. For IOPT=3, LDFJAC must not
 be less than N.

 FTOL is a non-negative input variable. Termination occurs when
 both the actual and predicted relative reductions in the sum
 of squares are at most FTOL. Therefore, FTOL measures the
 relative error desired in the sum of squares. Section 4 con-
 tains more details about FTOL.

 XTOL is a non-negative input variable. Termination occurs when
 the relative error between two consecutive iterates is at most
 XTOL. Therefore, XTOL measures the relative error desired in
 the approximate solution. Section 4 contains more details
 about XTOL.

 GTOL is a non-negative input variable. Termination occurs when
 the cosine of the angle between FVEC and any column of the
 Jacobian is at most GTOL in absolute value. Therefore, GTOL
 measures the orthogonality desired between the function vector
 and the columns of the Jacobian. Section 4 contains more
 details about GTOL.

 MAXFEV is a positive integer input variable. Termination occurs
 when the number of calls to FCN to evaluate the functions
 has reached MAXFEV.

 EPSFCN is an input variable used in determining a suitable step
 for the forward-difference approximation. This approximation
 assumes that the relative errors in the functions are of the
 order of EPSFCN. If EPSFCN is less than the machine preci-
 sion, it is assumed that the relative errors in the functions
 are of the order of the machine precision. If IOPT=2 or 3,
 then EPSFCN can be ignored (treat it as a dummy argument).

 DIAG is an array of length N. If MODE = 1 (see below), DIAG is
 internally set. If MODE = 2, DIAG must contain positive
 entries that serve as implicit (multiplicative) scale factors
 for the variables.

 MODE is an integer input variable. If MODE = 1, the variables

SLATEC3 (DACOSH through DS2Y) - 385

 will be scaled internally. If MODE = 2, the scaling is speci-
 fied by the input DIAG. Other values of MODE are equivalent
 to MODE = 1.

 FACTOR is a positive input variable used in determining the ini-
 tial step bound. This bound is set to the product of FACTOR
 and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
 itself. In most cases FACTOR should lie in the interval
 (.1,100.). 100. is a generally recommended value.

 NPRINT is an integer input variable that enables controlled
 printing of iterates if it is positive. In this case, FCN is
 called with IFLAG = 0 at the beginning of the first iteration
 and every NPRINT iterations thereafter and immediately prior
 to return, with X and FVEC available for printing. Appropriate
 print statements must be added to FCN (see example) and
 FVEC should not be altered. If NPRINT is not positive, no
 special calls to FCN with IFLAG = 0 are made.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN and JAC. Otherwise, INFO is set as follows

 INFO = 0 improper input parameters.

 INFO = 1 both actual and predicted relative reductions in the
 sum of squares are at most FTOL.

 INFO = 2 relative error between two consecutive iterates is
 at most XTOL.

 INFO = 3 conditions for INFO = 1 and INFO = 2 both hold.

 INFO = 4 the cosine of the angle between FVEC and any column
 of the Jacobian is at most GTOL in absolute value.

 INFO = 5 number of calls to FCN for function evaluation
 has reached MAXFEV.

 INFO = 6 FTOL is too small. No further reduction in the sum
 of squares is possible.

 INFO = 7 XTOL is too small. No further improvement in the
 approximate solution X is possible.

 INFO = 8 GTOL is too small. FVEC is orthogonal to the
 columns of the Jacobian to machine precision.

 Sections 4 and 5 contain more details about INFO.

 NFEV is an integer output variable set to the number of calls to
 FCN for function evaluation.

 NJEV is an integer output variable set to the number of
 evaluations of the full Jacobian. If IOPT=2, only one call to
 FCN is required for each evaluation of the full Jacobian.
 If IOPT=3, the M calls to FCN are required.
 If IOPT=1, then NJEV is set to zero.

 IPVT is an integer output array of length N. IPVT defines a

SLATEC3 (DACOSH through DS2Y) - 386

 permutation matrix P such that JAC*P = Q*R, where JAC is the
 final calculated Jacobian, Q is orthogonal (not stored), and R
 is upper triangular with diagonal elements of nonincreasing
 magnitude. Column J of P is column IPVT(J) of the identity
 matrix.

 QTF is an output array of length N which contains the first N
 elements of the vector (Q transpose)*FVEC.

 WA1, WA2, and WA3 are work arrays of length N.

 WA4 is a work array of length M.

 4. Successful Completion.

 The accuracy of DNLS1 is controlled by the convergence parame-
 ters FTOL, XTOL, and GTOL. These parameters are used in tests
 which make three types of comparisons between the approximation
 X and a solution XSOL. DNLS1 terminates when any of the tests
 is satisfied. If any of the convergence parameters is less than
 the machine precision (as defined by the function R1MACH(4)),
 then DNLS1 only attempts to satisfy the test defined by the
 machine precision. Further progress is not usually possible.

 The tests assume that the functions are reasonably well behaved,
 and, if the Jacobian is supplied by the user, that the functions
 and the Jacobian are coded consistently. If these conditions
 are not satisfied, then DNLS1 may incorrectly indicate conver-
 gence. If the Jacobian is coded correctly or IOPT=1,
 then the validity of the answer can be checked, for example, by
 rerunning DNLS1 with tighter tolerances.

 First Convergence Test. If ENORM(Z) denotes the Euclidean norm
 of a vector Z, then this test attempts to guarantee that

 ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

 where FVECS denotes the functions evaluated at XSOL. If this
 condition is satisfied with FTOL = 10**(-K), then the final
 residual norm ENORM(FVEC) has K significant decimal digits and
 INFO is set to 1 (or to 3 if the second test is also satis-
 fied). Unless high precision solutions are required, the
 recommended value for FTOL is the square root of the machine
 precision.

 Second Convergence Test. If D is the diagonal matrix whose
 entries are defined by the array DIAG, then this test attempts
 to guarantee that

 ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

 If this condition is satisfied with XTOL = 10**(-K), then the
 larger components of D*X have K significant decimal digits and
 INFO is set to 2 (or to 3 if the first test is also satis-
 fied). There is a danger that the smaller components of D*X
 may have large relative errors, but if MODE = 1, then the
 accuracy of the components of X is usually related to their
 sensitivity. Unless high precision solutions are required,
 the recommended value for XTOL is the square root of the

SLATEC3 (DACOSH through DS2Y) - 387

 machine precision.

 Third Convergence Test. This test is satisfied when the cosine
 of the angle between FVEC and any column of the Jacobian at X
 is at most GTOL in absolute value. There is no clear rela-
 tionship between this test and the accuracy of DNLS1, and
 furthermore, the test is equally well satisfied at other crit-
 ical points, namely maximizers and saddle points. Therefore,
 termination caused by this test (INFO = 4) should be examined
 carefully. The recommended value for GTOL is zero.

 5. Unsuccessful Completion.

 Unsuccessful termination of DNLS1 can be due to improper input
 parameters, arithmetic interrupts, or an excessive number of
 function evaluations.

 Improper Input Parameters. INFO is set to 0 if IOPT .LT. 1
 or IOPT .GT. 3, or N .LE. 0, or M .LT. N, or for IOPT=1 or 2
 LDFJAC .LT. M, or for IOPT=3 LDFJAC .LT. N, or FTOL .LT. 0.E0,
 or XTOL .LT. 0.E0, or GTOL .LT. 0.E0, or MAXFEV .LE. 0, or
 FACTOR .LE. 0.E0.

 Arithmetic Interrupts. If these interrupts occur in the FCN
 subroutine during an early stage of the computation, they may
 be caused by an unacceptable choice of X by DNLS1. In this
 case, it may be possible to remedy the situation by rerunning
 DNLS1 with a smaller value of FACTOR.

 Excessive Number of Function Evaluations. A reasonable value
 for MAXFEV is 100*(N+1) for IOPT=2 or 3 and 200*(N+1) for
 IOPT=1. If the number of calls to FCN reaches MAXFEV, then
 this indicates that the routine is converging very slowly
 as measured by the progress of FVEC, and INFO is set to 5.
 In this case, it may be helpful to restart DNLS1 with MODE
 set to 1.

 6. Characteristics of the Algorithm.

 DNLS1 is a modification of the Levenberg-Marquardt algorithm.
 Two of its main characteristics involve the proper use of
 implicitly scaled variables (if MODE = 1) and an optimal choice
 for the correction. The use of implicitly scaled variables
 achieves scale invariance of DNLS1 and limits the size of the
 correction in any direction where the functions are changing
 rapidly. The optimal choice of the correction guarantees (under
 reasonable conditions) global convergence from starting points
 far from the solution and a fast rate of convergence for
 problems with small residuals.

 Timing. The time required by DNLS1 to solve a given problem
 depends on M and N, the behavior of the functions, the accu-
 racy requested, and the starting point. The number of arith-
 metic operations needed by DNLS1 is about N**3 to process each
 evaluation of the functions (call to FCN) and to process each
 evaluation of the Jacobian it takes M*N**2 for IOPT=2 (one
 call to FCN), M*N**2 for IOPT=1 (N calls to FCN) and
 1.5*M*N**2 for IOPT=3 (M calls to FCN). Unless FCN

SLATEC3 (DACOSH through DS2Y) - 388

 can be evaluated quickly, the timing of DNLS1 will be
 strongly influenced by the time spent in FCN.

 Storage. DNLS1 requires (M*N + 2*M + 6*N) for IOPT=1 or 2 and
 (N**2 + 2*M + 6*N) for IOPT=3 single precision storage
 locations and N integer storage locations, in addition to
 the storage required by the program. There are no internally
 declared storage arrays.

 *Long Description:

 7. Example.

 The problem is to determine the values of X(1), X(2), and X(3)
 which provide the best fit (in the least squares sense) of

 X(1) + U(I)/(V(I)*X(2) + W(I)*X(3)), I = 1, 15

 to the data

 Y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
 0.37,0.58,0.73,0.96,1.34,2.10,4.39),

 where U(I) = I, V(I) = 16 - I, and W(I) = MIN(U(I),V(I)). The
 I-th component of FVEC is thus defined by

 Y(I) - (X(1) + U(I)/(V(I)*X(2) + W(I)*X(3))).

 PROGRAM TEST
 C
 C Driver for DNLS1 example.
 C
 INTEGER J,IOPT,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,
 * NWRITE
 INTEGER IPVT(3)
 DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR,FNORM,EPSFCN
 DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),DIAG(3),QTF(3),
 * WA1(3),WA2(3),WA3(3),WA4(15)
 DOUBLE PRECISION DENORM,D1MACH
 EXTERNAL FCN
 DATA NWRITE /6/
 C
 IOPT = 1
 M = 15
 N = 3
 C
 C The following starting values provide a rough fit.
 C
 X(1) = 1.E0
 X(2) = 1.E0
 X(3) = 1.E0
 C
 LDFJAC = 15
 C
 C Set FTOL and XTOL to the square root of the machine precision
 C and GTOL to zero. Unless high precision solutions are
 C required, these are the recommended settings.
 C

SLATEC3 (DACOSH through DS2Y) - 389

 FTOL = SQRT(R1MACH(4))
 XTOL = SQRT(R1MACH(4))
 GTOL = 0.E0
 C
 MAXFEV = 400
 EPSFCN = 0.0
 MODE = 1
 FACTOR = 1.E2
 NPRINT = 0
 C
 CALL DNLS1(FCN,IOPT,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,
 * GTOL,MAXFEV,EPSFCN,DIAG,MODE,FACTOR,NPRINT,
 * INFO,NFEV,NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)
 FNORM = ENORM(M,FVEC)
 WRITE (NWRITE,1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)
 STOP
 1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
 * 5X,' NUMBER OF FUNCTION EVALUATIONS',I10 //
 * 5X,' NUMBER OF JACOBIAN EVALUATIONS',I10 //
 * 5X,' EXIT PARAMETER',16X,I10 //
 * 5X,' FINAL APPROXIMATE SOLUTION' // 5X,3E15.7)
 END
 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,DUM,IDUM)
 C This is the form of the FCN routine if IOPT=1,
 C that is, if the user does not calculate the Jacobian.
 INTEGER I,M,N,IFLAG
 DOUBLE PRECISION X(N),FVEC(M),Y(15)
 DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 END

 Results obtained with different compilers or machines
 may be slightly different.

 FINAL L2 NORM OF THE RESIDUALS 0.9063596E-01

 NUMBER OF FUNCTION EVALUATIONS 25

 NUMBER OF JACOBIAN EVALUATIONS 0

 EXIT PARAMETER 1

SLATEC3 (DACOSH through DS2Y) - 390

 FINAL APPROXIMATE SOLUTION

 0.8241058E-01 0.1133037E+01 0.2343695E+01

 For IOPT=2, FCN would be modified as follows to also
 calculate the full Jacobian when IFLAG=2.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 C
 C This is the form of the FCN routine if IOPT=2,
 C that is, if the user calculates the full Jacobian.
 C
 INTEGER I,LDFJAC,M,N,IFLAG
 DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),Y(15)
 DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 IF(IFLAG.NE.1) GO TO 20
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 C
 C Below, calculate the full Jacobian.
 C
 20 CONTINUE
 C
 DO 30 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(I,1) = -1.E0
 FJAC(I,2) = TMP1*TMP2/TMP4
 FJAC(I,3) = TMP1*TMP3/TMP4
 30 CONTINUE
 RETURN
 END

 For IOPT = 3, FJAC would be dimensioned as FJAC(3,3),
 LDFJAC would be set to 3, and FCN would be written as
 follows to calculate a row of the Jacobian when IFLAG=3.

SLATEC3 (DACOSH through DS2Y) - 391

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 C This is the form of the FCN routine if IOPT=3,
 C that is, if the user calculates the Jacobian row by row.
 INTEGER I,M,N,IFLAG
 DOUBLE PRECISION X(N),FVEC(M),FJAC(N),Y(15)
 DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 IF(IFLAG.NE.1) GO TO 20
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 C
 C Below, calculate the LDFJAC-th row of the Jacobian.
 C
 20 CONTINUE

 I = LDFJAC
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(1) = -1.E0
 FJAC(2) = TMP1*TMP2/TMP4
 FJAC(3) = TMP1*TMP3/TMP4
 RETURN
 END

 ***REFERENCES Jorge J. More, The Levenberg-Marquardt algorithm:
 implementation and theory. In Numerical Analysis
 Proceedings (Dundee, June 28 - July 1, 1977, G. A.
 Watson, Editor), Lecture Notes in Mathematics 630,
 Springer-Verlag, 1978.
 ***ROUTINES CALLED D1MACH, DCKDER, DENORM, DFDJC3, DMPAR, DQRFAC,
 DWUPDT, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920205 Corrected XERN1 declaration. (WRB)

SLATEC3 (DACOSH through DS2Y) - 392

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 393

DNLS1E

 SUBROUTINE DNLS1E (FCN, IOPT, M, N, X, FVEC, TOL, NPRINT, INFO,
 + IW, WA, LWA)
 ***BEGIN PROLOGUE DNLS1E
 ***PURPOSE An easy-to-use code which minimizes the sum of the squares
 of M nonlinear functions in N variables by a modification
 of the Levenberg-Marquardt algorithm.
 ***LIBRARY SLATEC
 ***CATEGORY K1B1A1, K1B1A2
 ***TYPE DOUBLE PRECISION (SNLS1E-S, DNLS1E-D)
 ***KEYWORDS EASY-TO-USE, LEVENBERG-MARQUARDT, NONLINEAR DATA FITTING,
 NONLINEAR LEAST SQUARES
 ***AUTHOR Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 1. Purpose.

 The purpose of DNLS1E is to minimize the sum of the squares of M
 nonlinear functions in N variables by a modification of the
 Levenberg-Marquardt algorithm. This is done by using the more
 general least-squares solver DNLS1. The user must provide a
 subroutine which calculates the functions. The user has the
 option of how the Jacobian will be supplied. The user can
 supply the full Jacobian, or the rows of the Jacobian (to avoid
 storing the full Jacobian), or let the code approximate the
 Jacobian by forward-differencing. This code is the combination
 of the MINPACK codes (Argonne) LMDER1, LMDIF1, and LMSTR1.

 2. Subroutine and Type Statements.

 SUBROUTINE DNLS1E(FCN,IOPT,M,N,X,FVEC,TOL,NPRINT,
 * INFO,IW,WA,LWA)
 INTEGER IOPT,M,N,NPRINT,INFO,LWAC,IW(N)
 DOUBLE PRECISION TOL,X(N),FVEC(M),WA(LWA)
 EXTERNAL FCN

 3. Parameters. ALL TYPE REAL parameters are DOUBLE PRECISION

 Parameters designated as input parameters must be specified on
 entry to DNLS1E and are not changed on exit, while parameters
 designated as output parameters need not be specified on entry
 and are set to appropriate values on exit from DNLS1E.

 FCN is the name of the user-supplied subroutine which calculates
 the functions. If the user wants to supply the Jacobian
 (IOPT=2 or 3), then FCN must be written to calculate the
 Jacobian, as well as the functions. See the explanation
 of the IOPT argument below.
 If the user wants the iterates printed (NPRINT positive), then
 FCN must do the printing. See the explanation of NPRINT
 below. FCN must be declared in an EXTERNAL statement in the
 calling program and should be written as follows.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)

SLATEC3 (DACOSH through DS2Y) - 394

 INTEGER IFLAG,LDFJAC,M,N
 DOUBLE PRECISION X(N),FVEC(M)

 FJAC and LDFJAC may be ignored , if IOPT=1.
 DOUBLE PRECISION FJAC(LDFJAC,N) , if IOPT=2.
 DOUBLE PRECISION FJAC(N) , if IOPT=3.

 If IFLAG=0, the values in X and FVEC are available
 for printing. See the explanation of NPRINT below.
 IFLAG will never be zero unless NPRINT is positive.
 The values of X and FVEC must not be changed.
 RETURN

 If IFLAG=1, calculate the functions at X and return
 this vector in FVEC.
 RETURN

 If IFLAG=2, calculate the full Jacobian at X and return
 this matrix in FJAC. Note that IFLAG will never be 2 unless
 IOPT=2. FVEC contains the function values at X and must
 not be altered. FJAC(I,J) must be set to the derivative
 of FVEC(I) with respect to X(J).
 RETURN

 If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
 and return this vector in FJAC. Note that IFLAG will
 never be 3 unless IOPT=3. FVEC contains the function
 values at X and must not be altered. FJAC(J) must be
 set to the derivative of FVEC(LDFJAC) with respect to X(J).
 RETURN

 END

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of DNLS1E. In this case,
 set IFLAG to a negative integer.

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=2 or 3, then the user must supply the
 Jacobian, as well as the function values, through the
 subroutine FCN. If IOPT=2, the user supplies the full
 Jacobian with one call to FCN. If IOPT=3, the user supplies
 one row of the Jacobian with each call. (In this manner,
 storage can be saved because the full Jacobian is not stored.)
 If IOPT=1, the code will approximate the Jacobian by forward
 differencing.

 M is a positive integer input variable set to the number of
 functions.

 N is a positive integer input variable set to the number of
 variables. N must not exceed M.

 X is an array of length N. On input, X must contain an initial
 estimate of the solution vector. On output, X contains the
 final estimate of the solution vector.

 FVEC is an output array of length M which contains the functions

SLATEC3 (DACOSH through DS2Y) - 395

 evaluated at the output X.

 TOL is a non-negative input variable. Termination occurs when
 the algorithm estimates either that the relative error in the
 sum of squares is at most TOL or that the relative error
 between X and the solution is at most TOL. Section 4 contains
 more details about TOL.

 NPRINT is an integer input variable that enables controlled
 printing of iterates if it is positive. In this case, FCN is
 called with IFLAG = 0 at the beginning of the first iteration
 and every NPRINT iterations thereafter and immediately prior
 to return, with X and FVEC available for printing. Appropriate
 print statements must be added to FCN (see example) and
 FVEC should not be altered. If NPRINT is not positive, no
 special calls of FCN with IFLAG = 0 are made.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN and JAC. Otherwise, INFO is set as follows.

 INFO = 0 improper input parameters.

 INFO = 1 algorithm estimates that the relative error in the
 sum of squares is at most TOL.

 INFO = 2 algorithm estimates that the relative error between
 X and the solution is at most TOL.

 INFO = 3 conditions for INFO = 1 and INFO = 2 both hold.

 INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
 machine precision.

 INFO = 5 number of calls to FCN has reached 100*(N+1)
 for IOPT=2 or 3 or 200*(N+1) for IOPT=1.

 INFO = 6 TOL is too small. No further reduction in the sum
 of squares is possible.

 INFO = 7 TOL is too small. No further improvement in the
 approximate solution X is possible.

 Sections 4 and 5 contain more details about INFO.

 IW is an INTEGER work array of length N.

 WA is a work array of length LWA.

 LWA is a positive integer input variable not less than
 N*(M+5)+M for IOPT=1 and 2 or N*(N+5)+M for IOPT=3.

 4. Successful Completion.

 The accuracy of DNLS1E is controlled by the convergence parame-
 ter TOL. This parameter is used in tests which make three types
 of comparisons between the approximation X and a solution XSOL.
 DNLS1E terminates when any of the tests is satisfied. If TOL is
 less than the machine precision (as defined by the function

SLATEC3 (DACOSH through DS2Y) - 396

 R1MACH(4)), then DNLS1E only attempts to satisfy the test
 defined by the machine precision. Further progress is not usu-
 ally possible. Unless high precision solutions are required,
 the recommended value for TOL is the square root of the machine
 precision.

 The tests assume that the functions are reasonably well behaved,
 and, if the Jacobian is supplied by the user, that the functions
 and the Jacobian are coded consistently. If these conditions
 are not satisfied, then DNLS1E may incorrectly indicate conver-
 gence. If the Jacobian is coded correctly or IOPT=1,
 then the validity of the answer can be checked, for example, by
 rerunning DNLS1E with tighter tolerances.

 First Convergence Test. If ENORM(Z) denotes the Euclidean norm
 of a vector Z, then this test attempts to guarantee that

 ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

 where FVECS denotes the functions evaluated at XSOL. If this
 condition is satisfied with TOL = 10**(-K), then the final
 residual norm ENORM(FVEC) has K significant decimal digits and
 INFO is set to 1 (or to 3 if the second test is also satis-
 fied).

 Second Convergence Test. If D is a diagonal matrix (implicitly
 generated by DNLS1E) whose entries contain scale factors for
 the variables, then this test attempts to guarantee that

 ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

 If this condition is satisfied with TOL = 10**(-K), then the
 larger components of D*X have K significant decimal digits and
 INFO is set to 2 (or to 3 if the first test is also satis-
 fied). There is a danger that the smaller components of D*X
 may have large relative errors, but the choice of D is such
 that the accuracy of the components of X is usually related to
 their sensitivity.

 Third Convergence Test. This test is satisfied when FVEC is
 orthogonal to the columns of the Jacobian to machine preci-
 sion. There is no clear relationship between this test and
 the accuracy of DNLS1E, and furthermore, the test is equally
 well satisfied at other critical points, namely maximizers and
 saddle points. Therefore, termination caused by this test
 (INFO = 4) should be examined carefully.

 5. Unsuccessful Completion.

 Unsuccessful termination of DNLS1E can be due to improper input
 parameters, arithmetic interrupts, or an excessive number of
 function evaluations.

 Improper Input Parameters. INFO is set to 0 if IOPT .LT. 1
 or IOPT .GT. 3, or N .LE. 0, or M .LT. N, or TOL .LT. 0.E0,
 or for IOPT=1 or 2 LWA .LT. N*(M+5)+M, or for IOPT=3
 LWA .LT. N*(N+5)+M.

 Arithmetic Interrupts. If these interrupts occur in the FCN

SLATEC3 (DACOSH through DS2Y) - 397

 subroutine during an early stage of the computation, they may
 be caused by an unacceptable choice of X by DNLS1E. In this
 case, it may be possible to remedy the situation by not evalu-
 ating the functions here, but instead setting the components
 of FVEC to numbers that exceed those in the initial FVEC.

 Excessive Number of Function Evaluations. If the number of
 calls to FCN reaches 100*(N+1) for IOPT=2 or 3 or 200*(N+1)
 for IOPT=1, then this indicates that the routine is converging
 very slowly as measured by the progress of FVEC, and INFO is
 set to 5. In this case, it may be helpful to restart DNLS1E,
 thereby forcing it to disregard old (and possibly harmful)
 information.

 6. Characteristics of the Algorithm.

 DNLS1E is a modification of the Levenberg-Marquardt algorithm.
 Two of its main characteristics involve the proper use of
 implicitly scaled variables and an optimal choice for the cor-
 rection. The use of implicitly scaled variables achieves scale
 invariance of DNLS1E and limits the size of the correction in
 any direction where the functions are changing rapidly. The
 optimal choice of the correction guarantees (under reasonable
 conditions) global convergence from starting points far from the
 solution and a fast rate of convergence for problems with small
 residuals.

 Timing. The time required by DNLS1E to solve a given problem
 depends on M and N, the behavior of the functions, the accu-
 racy requested, and the starting point. The number of arith-
 metic operations needed by DNLS1E is about N**3 to process
 each evaluation of the functions (call to FCN) and to process
 each evaluation of the Jacobian DNLS1E takes M*N**2 for IOPT=2
 (one call to JAC), M*N**2 for IOPT=1 (N calls to FCN) and
 1.5*M*N**2 for IOPT=3 (M calls to FCN). Unless FCN
 can be evaluated quickly, the timing of DNLS1E will be
 strongly influenced by the time spent in FCN.

 Storage. DNLS1E requires (M*N + 2*M + 6*N) for IOPT=1 or 2 and
 (N**2 + 2*M + 6*N) for IOPT=3 single precision storage
 locations and N integer storage locations, in addition to
 the storage required by the program. There are no internally
 declared storage arrays.

 *Long Description:

 7. Example.

 The problem is to determine the values of X(1), X(2), and X(3)
 which provide the best fit (in the least squares sense) of

 X(1) + U(I)/(V(I)*X(2) + W(I)*X(3)), I = 1, 15

 to the data

 Y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
 0.37,0.58,0.73,0.96,1.34,2.10,4.39),

 where U(I) = I, V(I) = 16 - I, and W(I) = MIN(U(I),V(I)). The

SLATEC3 (DACOSH through DS2Y) - 398

 I-th component of FVEC is thus defined by

 Y(I) - (X(1) + U(I)/(V(I)*X(2) + W(I)*X(3))).

 PROGRAM TEST
 C
 C Driver for DNLS1E example.
 C
 INTEGER I,IOPT,M,N,NPRINT,JNFO,LWA,NWRITE
 INTEGER IW(3)
 DOUBLE PRECISION TOL,FNORM,X(3),FVEC(15),WA(75)
 DOUBLE PRECISION DENORM,D1MACH
 EXTERNAL FCN
 DATA NWRITE /6/
 C
 IOPT = 1
 M = 15
 N = 3
 C
 C The following starting values provide a rough fit.
 C
 X(1) = 1.E0
 X(2) = 1.E0
 X(3) = 1.E0
 C
 LWA = 75
 NPRINT = 0
 C
 C Set TOL to the square root of the machine precision.
 C Unless high precision solutions are required,
 C this is the recommended setting.
 C
 TOL = SQRT(R1MACH(4))
 C
 CALL DNLS1E(FCN,IOPT,M,N,X,FVEC,TOL,NPRINT,
 * INFO,IW,WA,LWA)
 FNORM = ENORM(M,FVEC)
 WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
 STOP
 1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
 * 5X,' EXIT
 * 5X,' FINAL APPROXIMATE SOLUTION' // 5X,3E15.7)
 END
 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,DUM,IDUM)
 C This is the form of the FCN routine if IOPT=1,
 C that is, if the user does not calculate the Jacobian.
 INTEGER I,M,N,IFLAG
 DOUBLE PRECISION X(N),FVEC(M),Y(15)
 DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C

SLATEC3 (DACOSH through DS2Y) - 399

 RETURN
 5 CONTINUE
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 END

 Results obtained with different compilers or machines
 may be slightly different.

 FINAL L2 NORM OF THE RESIDUALS 0.9063596E-01

 EXIT PARAMETER 1

 FINAL APPROXIMATE SOLUTION

 0.8241058E-01 0.1133037E+01 0.2343695E+01

 For IOPT=2, FCN would be modified as follows to also
 calculate the full Jacobian when IFLAG=2.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 C
 C This is the form of the FCN routine if IOPT=2,
 C that is, if the user calculates the full Jacobian.
 C
 INTEGER I,LDFJAC,M,N,IFLAG
 DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),Y(15)
 DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 IF(IFLAG.NE.1) GO TO 20
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 C
 C Below, calculate the full Jacobian.
 C
 20 CONTINUE

SLATEC3 (DACOSH through DS2Y) - 400

 C
 DO 30 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(I,1) = -1.E0
 FJAC(I,2) = TMP1*TMP2/TMP4
 FJAC(I,3) = TMP1*TMP3/TMP4
 30 CONTINUE
 RETURN
 END

 For IOPT = 3, FJAC would be dimensioned as FJAC(3,3),
 LDFJAC would be set to 3, and FCN would be written as
 follows to calculate a row of the Jacobian when IFLAG=3.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 C This is the form of the FCN routine if IOPT=3,
 C that is, if the user calculates the Jacobian row by row.
 INTEGER I,M,N,IFLAG
 DOUBLE PRECISION X(N),FVEC(M),FJAC(N),Y(15)
 DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 IF(IFLAG.NE.1) GO TO 20
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 C
 C Below, calculate the LDFJAC-th row of the Jacobian.
 C
 20 CONTINUE

 I = LDFJAC
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(1) = -1.E0
 FJAC(2) = TMP1*TMP2/TMP4
 FJAC(3) = TMP1*TMP3/TMP4
 RETURN

SLATEC3 (DACOSH through DS2Y) - 401

 END

 ***REFERENCES Jorge J. More, The Levenberg-Marquardt algorithm:
 implementation and theory. In Numerical Analysis
 Proceedings (Dundee, June 28 - July 1, 1977, G. A.
 Watson, Editor), Lecture Notes in Mathematics 630,
 Springer-Verlag, 1978.
 ***ROUTINES CALLED DNLS1, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 402

DNRM2

 DOUBLE PRECISION FUNCTION DNRM2 (N, DX, INCX)
 ***BEGIN PROLOGUE DNRM2
 ***PURPOSE Compute the Euclidean length (L2 norm) of a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A3B
 ***TYPE DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C)
 ***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2,
 LINEAR ALGEBRA, UNITARY, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of parameters

 --Input--
 N number of elements in input vector(s)
 DX double precision vector with N elements
 INCX storage spacing between elements of DX

 --Output--
 DNRM2 double precision result (zero if N .LE. 0)

 Euclidean norm of the N-vector stored in DX with storage
 increment INCX.
 If N .LE. 0, return with result = 0.
 If N .GE. 1, then INCX must be .GE. 1

 Four phase method using two built-in constants that are
 hopefully applicable to all machines.
 CUTLO = maximum of SQRT(U/EPS) over all known machines.
 CUTHI = minimum of SQRT(V) over all known machines.
 where
 EPS = smallest no. such that EPS + 1. .GT. 1.
 U = smallest positive no. (underflow limit)
 V = largest no. (overflow limit)

 Brief outline of algorithm.

 Phase 1 scans zero components.
 move to phase 2 when a component is nonzero and .LE. CUTLO
 move to phase 3 when a component is .GT. CUTLO
 move to phase 4 when a component is .GE. CUTHI/M
 where M = N for X() real and M = 2*N for complex.

 Values for CUTLO and CUTHI.
 From the environmental parameters listed in the IMSL converter
 document the limiting values are as follows:
 CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are
 Univac and DEC at 2**(-103)
 Thus CUTLO = 2**(-51) = 4.44089E-16
 CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC.
 Thus CUTHI = 2**(63.5) = 1.30438E19
 CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC.

SLATEC3 (DACOSH through DS2Y) - 403

 Thus CUTLO = 2**(-33.5) = 8.23181D-11
 CUTHI, D.P. same as S.P. CUTHI = 1.30438D19
 DATA CUTLO, CUTHI /8.232D-11, 1.304D19/
 DATA CUTLO, CUTHI /4.441E-16, 1.304E19/

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 404

DNSQ

 SUBROUTINE DNSQ (FCN, JAC, IOPT, N, X, FVEC, FJAC, LDFJAC, XTOL,
 MAXFEV, ML, MU, EPSFCN, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV,
 + NJEV, R, LR, QTF, WA1, WA2, WA3, WA4)
 ***BEGIN PROLOGUE DNSQ
 ***PURPOSE Find a zero of a system of a N nonlinear functions in N
 variables by a modification of the Powell hybrid method.
 ***LIBRARY SLATEC
 ***CATEGORY F2A
 ***TYPE DOUBLE PRECISION (SNSQ-S, DNSQ-D)
 ***KEYWORDS NONLINEAR SQUARE SYSTEM, POWELL HYBRID METHOD, ZEROS
 ***AUTHOR Hiebert, K. L. (SNLA)
 ***DESCRIPTION

 1. Purpose.

 The purpose of DNSQ is to find a zero of a system of N nonlinear
 functions in N variables by a modification of the Powell
 hybrid method. The user must provide a subroutine which
 calculates the functions. The user has the option of either to
 provide a subroutine which calculates the Jacobian or to let the
 code calculate it by a forward-difference approximation.
 This code is the combination of the MINPACK codes (Argonne)
 HYBRD and HYBRDJ.

 2. Subroutine and Type Statements.

 SUBROUTINE DNSQ(FCN,JAC,IOPT,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,
 * ML,MU,EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,
 * NJEV,R,LR,QTF,WA1,WA2,WA3,WA4)
 INTEGER IOPT,N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,NJEV,LR
 DOUBLE PRECISION XTOL,EPSFCN,FACTOR
 DOUBLE PRECISION
 X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),QTF(N),
 * WA1(N),WA2(N),WA3(N),WA4(N)
 EXTERNAL FCN,JAC

 3. Parameters.

 Parameters designated as input parameters must be specified on
 entry to DNSQ and are not changed on exit, while parameters
 designated as output parameters need not be specified on entry
 and are set to appropriate values on exit from DNSQ.

 FCN is the name of the user-supplied subroutine which calculates
 the functions. FCN must be declared in an EXTERNAL statement
 in the user calling program, and should be written as follows.

 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 DOUBLE PRECISION X(N),FVEC(N)

 CALCULATE THE FUNCTIONS AT X AND
 RETURN THIS VECTOR IN FVEC.

 RETURN
 END

SLATEC3 (DACOSH through DS2Y) - 405

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of DNSQ. In this case set
 IFLAG to a negative integer.

 JAC is the name of the user-supplied subroutine which calculates
 the Jacobian. If IOPT=1, then JAC must be declared in an
 EXTERNAL statement in the user calling program, and should be
 written as follows.

 SUBROUTINE JAC(N,X,FVEC,FJAC,LDFJAC,IFLAG)
 INTEGER N,LDFJAC,IFLAG
 DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

 Calculate the Jacobian at X and return this
 matrix in FJAC. FVEC contains the function
 values at X and should not be altered.

 RETURN
 END

 The value of IFLAG should not be changed by JAC unless the
 user wants to terminate execution of DNSQ. In this case set
 IFLAG to a negative integer.

 If IOPT=2, JAC can be ignored (treat it as a dummy argument).

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=1, then the user must supply the
 Jacobian through the subroutine JAC. If IOPT=2, then the
 code will approximate the Jacobian by forward-differencing.

 N is a positive integer input variable set to the number of
 functions and variables.

 X is an array of length N. On input X must contain an initial
 estimate of the solution vector. On output X contains the
 final estimate of the solution vector.

 FVEC is an output array of length N which contains the functions
 evaluated at the output X.

 FJAC is an output N by N array which contains the orthogonal
 matrix Q produced by the QR factorization of the final
 approximate Jacobian.

 LDFJAC is a positive integer input variable not less than N
 which specifies the leading dimension of the array FJAC.

 XTOL is a nonnegative input variable. Termination occurs when
 the relative error between two consecutive iterates is at most
 XTOL. Therefore, XTOL measures the relative error desired in
 the approximate solution. Section 4 contains more details
 about XTOL.

 MAXFEV is a positive integer input variable. Termination occurs
 when the number of calls to FCN is at least MAXFEV by the end
 of an iteration.

 ML is a nonnegative integer input variable which specifies the

SLATEC3 (DACOSH through DS2Y) - 406

 number of subdiagonals within the band of the Jacobian matrix.
 If the Jacobian is not banded or IOPT=1, set ML to at
 least N - 1.

 MU is a nonnegative integer input variable which specifies the
 number of superdiagonals within the band of the Jacobian
 matrix. If the Jacobian is not banded or IOPT=1, set MU to at
 least N - 1.

 EPSFCN is an input variable used in determining a suitable step
 for the forward-difference approximation. This approximation
 assumes that the relative errors in the functions are of the
 order of EPSFCN. If EPSFCN is less than the machine
 precision, it is assumed that the relative errors in the
 functions are of the order of the machine precision. If
 IOPT=1, then EPSFCN can be ignored (treat it as a dummy
 argument).

 DIAG is an array of length N. If MODE = 1 (see below), DIAG is
 internally set. If MODE = 2, DIAG must contain positive
 entries that serve as implicit (multiplicative) scale factors
 for the variables.

 MODE is an integer input variable. If MODE = 1, the variables
 will be scaled internally. If MODE = 2, the scaling is
 specified by the input DIAG. Other values of MODE are
 equivalent to MODE = 1.

 FACTOR is a positive input variable used in determining the
 initial step bound. This bound is set to the product of
 FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to
 FACTOR itself. In most cases FACTOR should lie in the
 interval (.1,100.). 100. is a generally recommended value.

 NPRINT is an integer input variable that enables controlled
 printing of iterates if it is positive. In this case, FCN is
 called with IFLAG = 0 at the beginning of the first iteration
 and every NPRINT iterations thereafter and immediately prior
 to return, with X and FVEC available for printing. appropriate
 print statements must be added to FCN(see example). If NPRINT
 is not positive, no special calls of FCN with IFLAG = 0 are
 made.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN and JAC. Otherwise, INFO is set as follows.

 INFO = 0 Improper input parameters.

 INFO = 1 Relative error between two consecutive iterates is
 at most XTOL.

 INFO = 2 Number of calls to FCN has reached or exceeded
 MAXFEV.

 INFO = 3 XTOL is too small. No further improvement in the
 approximate solution X is possible.

 INFO = 4 Iteration is not making good progress, as measured
 by the improvement from the last five Jacobian

SLATEC3 (DACOSH through DS2Y) - 407

 evaluations.

 INFO = 5 Iteration is not making good progress, as measured
 by the improvement from the last ten iterations.

 Sections 4 and 5 contain more details about INFO.

 NFEV is an integer output variable set to the number of calls to
 FCN.

 NJEV is an integer output variable set to the number of calls to
 JAC. (If IOPT=2, then NJEV is set to zero.)

 R is an output array of length LR which contains the upper
 triangular matrix produced by the QR factorization of the
 final approximate Jacobian, stored rowwise.

 LR is a positive integer input variable not less than
 (N*(N+1))/2.

 QTF is an output array of length N which contains the vector
 (Q transpose)*FVEC.

 WA1, WA2, WA3, and WA4 are work arrays of length N.

 4. Successful completion.

 The accuracy of DNSQ is controlled by the convergence parameter
 XTOL. This parameter is used in a test which makes a comparison
 between the approximation X and a solution XSOL. DNSQ
 terminates when the test is satisfied. If the convergence
 parameter is less than the machine precision (as defined by the
 function D1MACH(4)), then DNSQ only attempts to satisfy the test
 defined by the machine precision. Further progress is not
 usually possible.

 The test assumes that the functions are reasonably well behaved,
 and, if the Jacobian is supplied by the user, that the functions
 and the Jacobian are coded consistently. If these conditions
 are not satisfied, then DNSQ may incorrectly indicate
 convergence. The coding of the Jacobian can be checked by the
 subroutine DCKDER. If the Jacobian is coded correctly or IOPT=2,
 then the validity of the answer can be checked, for example, by
 rerunning DNSQ with a tighter tolerance.

 Convergence Test. If DENORM(Z) denotes the Euclidean norm of a
 vector Z and D is the diagonal matrix whose entries are
 defined by the array DIAG, then this test attempts to
 guarantee that

 DENORM(D*(X-XSOL)) .LE. XTOL*DENORM(D*XSOL).

 If this condition is satisfied with XTOL = 10**(-K), then the
 larger components of D*X have K significant decimal digits and
 INFO is set to 1. There is a danger that the smaller
 components of D*X may have large relative errors, but the fast
 rate of convergence of DNSQ usually avoids this possibility.
 Unless high precision solutions are required, the recommended
 value for XTOL is the square root of the machine precision.

SLATEC3 (DACOSH through DS2Y) - 408

 5. Unsuccessful Completion.

 Unsuccessful termination of DNSQ can be due to improper input
 parameters, arithmetic interrupts, an excessive number of
 function evaluations, or lack of good progress.

 Improper Input Parameters. INFO is set to 0 if IOPT .LT .1,
 or IOPT .GT. 2, or N .LE. 0, or LDFJAC .LT. N, or
 XTOL .LT. 0.E0, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0,
 or FACTOR .LE. 0.E0, or LR .LT. (N*(N+1))/2.

 Arithmetic Interrupts. If these interrupts occur in the FCN
 subroutine during an early stage of the computation, they may
 be caused by an unacceptable choice of X by DNSQ. In this
 case, it may be possible to remedy the situation by rerunning
 DNSQ with a smaller value of FACTOR.

 Excessive Number of Function Evaluations. A reasonable value
 for MAXFEV is 100*(N+1) for IOPT=1 and 200*(N+1) for IOPT=2.
 If the number of calls to FCN reaches MAXFEV, then this
 indicates that the routine is converging very slowly as
 measured by the progress of FVEC, and INFO is set to 2. This
 situation should be unusual because, as indicated below, lack
 of good progress is usually diagnosed earlier by DNSQ,
 causing termination with info = 4 or INFO = 5.

 Lack of Good Progress. DNSQ searches for a zero of the system
 by minimizing the sum of the squares of the functions. In so
 doing, it can become trapped in a region where the minimum
 does not correspond to a zero of the system and, in this
 situation, the iteration eventually fails to make good
 progress. In particular, this will happen if the system does
 not have a zero. If the system has a zero, rerunning DNSQ
 from a different starting point may be helpful.

 6. Characteristics of The Algorithm.

 DNSQ is a modification of the Powell Hybrid method. Two of its
 main characteristics involve the choice of the correction as a
 convex combination of the Newton and scaled gradient directions,
 and the updating of the Jacobian by the rank-1 method of
 Broyden. The choice of the correction guarantees (under
 reasonable conditions) global convergence for starting points
 far from the solution and a fast rate of convergence. The
 Jacobian is calculated at the starting point by either the
 user-supplied subroutine or a forward-difference approximation,
 but it is not recalculated until the rank-1 method fails to
 produce satisfactory progress.

 Timing. The time required by DNSQ to solve a given problem
 depends on N, the behavior of the functions, the accuracy
 requested, and the starting point. The number of arithmetic
 operations needed by DNSQ is about 11.5*(N**2) to process
 each evaluation of the functions (call to FCN) and 1.3*(N**3)
 to process each evaluation of the Jacobian (call to JAC,
 if IOPT = 1). Unless FCN and JAC can be evaluated quickly,
 the timing of DNSQ will be strongly influenced by the time

SLATEC3 (DACOSH through DS2Y) - 409

 spent in FCN and JAC.

 Storage. DNSQ requires (3*N**2 + 17*N)/2 single precision
 storage locations, in addition to the storage required by the
 program. There are no internally declared storage arrays.

 *Long Description:

 7. Example.

 The problem is to determine the values of X(1), X(2), ..., X(9),
 which solve the system of tridiagonal equations

 (3-2*X(1))*X(1) -2*X(2) = -1
 -X(I-1) + (3-2*X(I))*X(I) -2*X(I+1) = -1, I=2-8
 -X(8) + (3-2*X(9))*X(9) = -1
 C **********

 PROGRAM TEST
 C
 C Driver for DNSQ example.
 C
 INTEGER J,IOPT,N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR,
 * NWRITE
 DOUBLE PRECISION XTOL,EPSFCN,FACTOR,FNORM
 DOUBLE PRECISION X(9),FVEC(9),DIAG(9),FJAC(9,9),R(45),QTF(9),
 * WA1(9),WA2(9),WA3(9),WA4(9)
 DOUBLE PRECISION DENORM,D1MACH
 EXTERNAL FCN
 DATA NWRITE /6/
 C
 IOPT = 2
 N = 9
 C
 C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
 C
 DO 10 J = 1, 9
 X(J) = -1.E0
 10 CONTINUE
 C
 LDFJAC = 9
 LR = 45
 C
 C SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
 C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
 C THIS IS THE RECOMMENDED SETTING.
 C
 XTOL = SQRT(D1MACH(4))
 C
 MAXFEV = 2000
 ML = 1
 MU = 1
 EPSFCN = 0.E0
 MODE = 2
 DO 20 J = 1, 9
 DIAG(J) = 1.E0
 20 CONTINUE
 FACTOR = 1.E2
 NPRINT = 0
 C

SLATEC3 (DACOSH through DS2Y) - 410

 CALL DNSQ(FCN,JAC,IOPT,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,ML,MU,
 * EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
 * R,LR,QTF,WA1,WA2,WA3,WA4)
 FNORM = DENORM(N,FVEC)
 WRITE (NWRITE,1000) FNORM,NFEV,INFO,(X(J),J=1,N)
 STOP
 1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
 * 5X,' NUMBER OF FUNCTION EVALUATIONS',I10 //
 * 5X,' EXIT PARAMETER',16X,I10 //
 * 5X,' FINAL APPROXIMATE SOLUTION' // (5X,3E15.7))
 END
 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 DOUBLE PRECISION X(N),FVEC(N)
 INTEGER K
 DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
 DATA ZERO,ONE,TWO,THREE /0.E0,1.E0,2.E0,3.E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
 C
 RETURN
 5 CONTINUE
 DO 10 K = 1, N
 TEMP = (THREE - TWO*X(K))*X(K)
 TEMP1 = ZERO
 IF (K .NE. 1) TEMP1 = X(K-1)
 TEMP2 = ZERO
 IF (K .NE. N) TEMP2 = X(K+1)
 FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
 10 CONTINUE
 RETURN
 END

 Results obtained with different compilers or machines
 may be slightly different.

 Final L2 norm of the residuals 0.1192636E-07

 Number of function evaluations 14

 Exit parameter 1

 Final approximate solution

 -0.5706545E+00 -0.6816283E+00 -0.7017325E+00
 -0.7042129E+00 -0.7013690E+00 -0.6918656E+00
 -0.6657920E+00 -0.5960342E+00 -0.4164121E+00

 ***REFERENCES M. J. D. Powell, A hybrid method for nonlinear equa-
 tions. In Numerical Methods for Nonlinear Algebraic
 Equations, P. Rabinowitz, Editor. Gordon and Breach,
 1988.
 ***ROUTINES CALLED D1MACH, D1MPYQ, D1UPDT, DDOGLG, DENORM, DFDJC1,
 DQFORM, DQRFAC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)

SLATEC3 (DACOSH through DS2Y) - 411

 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 412

DNSQE

 SUBROUTINE DNSQE (FCN, JAC, IOPT, N, X, FVEC, TOL, NPRINT, INFO,
 + WA, LWA)
 ***BEGIN PROLOGUE DNSQE
 ***PURPOSE An easy-to-use code to find a zero of a system of N
 nonlinear functions in N variables by a modification of
 the Powell hybrid method.
 ***LIBRARY SLATEC
 ***CATEGORY F2A
 ***TYPE DOUBLE PRECISION (SNSQE-S, DNSQE-D)
 ***KEYWORDS EASY-TO-USE, NONLINEAR SQUARE SYSTEM,
 POWELL HYBRID METHOD, ZEROS
 ***AUTHOR Hiebert, K. L. (SNLA)
 ***DESCRIPTION

 1. Purpose.

 The purpose of DNSQE is to find a zero of a system of N
 nonlinear functions in N variables by a modification of the
 Powell hybrid method. This is done by using the more general
 nonlinear equation solver DNSQ. The user must provide a
 subroutine which calculates the functions. The user has the
 option of either to provide a subroutine which calculates the
 Jacobian or to let the code calculate it by a forward-difference
 approximation. This code is the combination of the MINPACK
 codes (Argonne) HYBRD1 and HYBRJ1.

 2. Subroutine and Type Statements.

 SUBROUTINE DNSQE(FCN,JAC,IOPT,N,X,FVEC,TOL,NPRINT,INFO,
 * WA,LWA)
 INTEGER IOPT,N,NPRINT,INFO,LWA
 DOUBLE PRECISION TOL
 DOUBLE PRECISION X(N),FVEC(N),WA(LWA)
 EXTERNAL FCN,JAC

 3. Parameters.

 Parameters designated as input parameters must be specified on
 entry to DNSQE and are not changed on exit, while parameters
 designated as output parameters need not be specified on entry
 and are set to appropriate values on exit from DNSQE.

 FCN is the name of the user-supplied subroutine which calculates
 the functions. FCN must be declared in an external statement
 in the user calling program, and should be written as follows.

 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 DOUBLE PRECISION X(N),FVEC(N)

 Calculate the functions at X and
 return this vector in FVEC.

 RETURN
 END

SLATEC3 (DACOSH through DS2Y) - 413

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of DNSQE. In this case set
 IFLAG to a negative integer.

 JAC is the name of the user-supplied subroutine which calculates
 the Jacobian. If IOPT=1, then JAC must be declared in an
 external statement in the user calling program, and should be
 written as follows.

 SUBROUTINE JAC(N,X,FVEC,FJAC,LDFJAC,IFLAG)
 INTEGER N,LDFJAC,IFLAG
 DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

 Calculate the Jacobian at X and return this
 matrix in FJAC. FVEC contains the function
 values at X and should not be altered.

 RETURN
 END

 The value of IFLAG should not be changed by JAC unless the
 user wants to terminate execution of DNSQE. In this case set
 IFLAG to a negative integer.

 If IOPT=2, JAC can be ignored (treat it as a dummy argument).

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=1, then the user must supply the
 Jacobian through the subroutine JAC. If IOPT=2, then the
 code will approximate the Jacobian by forward-differencing.

 N is a positive integer input variable set to the number of
 functions and variables.

 X is an array of length N. On input X must contain an initial
 estimate of the solution vector. On output X contains the
 final estimate of the solution vector.

 FVEC is an output array of length N which contains the functions
 evaluated at the output X.

 TOL is a nonnegative input variable. Termination occurs when
 the algorithm estimates that the relative error between X and
 the solution is at most TOL. Section 4 contains more details
 about TOL.

 NPRINT is an integer input variable that enables controlled
 printing of iterates if it is positive. In this case, FCN is
 called with IFLAG = 0 at the beginning of the first iteration
 and every NPRINT iterations thereafter and immediately prior
 to return, with X and FVEC available for printing. Appropriate
 print statements must be added to FCN(see example). If NPRINT
 is not positive, no special calls of FCN with IFLAG = 0 are
 made.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN and JAC. Otherwise, INFO is set as follows.

 INFO = 0 Improper input parameters.

SLATEC3 (DACOSH through DS2Y) - 414

 INFO = 1 Algorithm estimates that the relative error between
 X and the solution is at most TOL.

 INFO = 2 Number of calls to FCN has reached or exceeded
 100*(N+1) for IOPT=1 or 200*(N+1) for IOPT=2.

 INFO = 3 TOL is too small. No further improvement in the
 approximate solution X is possible.

 INFO = 4 Iteration is not making good progress.

 Sections 4 and 5 contain more details about INFO.

 WA is a work array of length LWA.

 LWA is a positive integer input variable not less than
 (3*N**2+13*N))/2.

 4. Successful Completion.

 The accuracy of DNSQE is controlled by the convergence parameter
 TOL. This parameter is used in a test which makes a comparison
 between the approximation X and a solution XSOL. DNSQE
 terminates when the test is satisfied. If TOL is less than the
 machine precision (as defined by the function D1MACH(4)), then
 DNSQE only attempts to satisfy the test defined by the machine
 precision. Further progress is not usually possible. Unless
 high precision solutions are required, the recommended value
 for TOL is the square root of the machine precision.

 The test assumes that the functions are reasonably well behaved,
 and, if the Jacobian is supplied by the user, that the functions
 and the Jacobian are coded consistently. If these conditions are
 not satisfied, then DNSQE may incorrectly indicate convergence.
 The coding of the Jacobian can be checked by the subroutine
 DCKDER. If the Jacobian is coded correctly or IOPT=2, then
 the validity of the answer can be checked, for example, by
 rerunning DNSQE with a tighter tolerance.

 Convergence Test. If DENORM(Z) denotes the Euclidean norm of a
 vector Z, then this test attempts to guarantee that

 DENORM(X-XSOL) .LE. TOL*DENORM(XSOL).

 If this condition is satisfied with TOL = 10**(-K), then the
 larger components of X have K significant decimal digits and
 INFO is set to 1. There is a danger that the smaller
 components of X may have large relative errors, but the fast
 rate of convergence of DNSQE usually avoids this possibility.

 5. Unsuccessful Completion.

 Unsuccessful termination of DNSQE can be due to improper input
 parameters, arithmetic interrupts, an excessive number of
 function evaluations, errors in the functions, or lack of good
 progress.

 Improper Input Parameters. INFO is set to 0 if IOPT .LT. 1, or
 IOPT .GT. 2, or N .LE. 0, or TOL .LT. 0.E0, or

SLATEC3 (DACOSH through DS2Y) - 415

 LWA .LT. (3*N**2+13*N)/2.

 Arithmetic Interrupts. If these interrupts occur in the FCN
 subroutine during an early stage of the computation, they may
 be caused by an unacceptable choice of X by DNSQE. In this
 case, it may be possible to remedy the situation by not
 evaluating the functions here, but instead setting the
 components of FVEC to numbers that exceed those in the initial
 FVEC.

 Excessive Number of Function Evaluations. If the number of
 calls to FCN reaches 100*(N+1) for IOPT=1 or 200*(N+1) for
 IOPT=2, then this indicates that the routine is converging
 very slowly as measured by the progress of FVEC, and INFO is
 set to 2. This situation should be unusual because, as
 indicated below, lack of good progress is usually diagnosed
 earlier by DNSQE, causing termination with INFO = 4.

 Errors In the Functions. When IOPT=2, the choice of step length
 in the forward-difference approximation to the Jacobian
 assumes that the relative errors in the functions are of the
 order of the machine precision. If this is not the case,
 DNSQE may fail (usually with INFO = 4). The user should
 then either use DNSQ and set the step length or use IOPT=1
 and supply the Jacobian.

 Lack of Good Progress. DNSQE searches for a zero of the system
 by minimizing the sum of the squares of the functions. In so
 doing, it can become trapped in a region where the minimum
 does not correspond to a zero of the system and, in this
 situation, the iteration eventually fails to make good
 progress. In particular, this will happen if the system does
 not have a zero. If the system has a zero, rerunning DNSQE
 from a different starting point may be helpful.

 6. Characteristics of The Algorithm.

 DNSQE is a modification of the Powell Hybrid method. Two of
 its main characteristics involve the choice of the correction as
 a convex combination of the Newton and scaled gradient
 directions, and the updating of the Jacobian by the rank-1
 method of Broyden. The choice of the correction guarantees
 (under reasonable conditions) global convergence for starting
 points far from the solution and a fast rate of convergence.
 The Jacobian is calculated at the starting point by either the
 user-supplied subroutine or a forward-difference approximation,
 but it is not recalculated until the rank-1 method fails to
 produce satisfactory progress.

 Timing. The time required by DNSQE to solve a given problem
 depends on N, the behavior of the functions, the accuracy
 requested, and the starting point. The number of arithmetic
 operations needed by DNSQE is about 11.5*(N**2) to process
 each evaluation of the functions (call to FCN) and 1.3*(N**3)
 to process each evaluation of the Jacobian (call to JAC,
 if IOPT = 1). Unless FCN and JAC can be evaluated quickly,
 the timing of DNSQE will be strongly influenced by the time
 spent in FCN and JAC.

 Storage. DNSQE requires (3*N**2 + 17*N)/2 single precision

SLATEC3 (DACOSH through DS2Y) - 416

 storage locations, in addition to the storage required by the
 program. There are no internally declared storage arrays.

 *Long Description:

 7. Example.

 The problem is to determine the values of X(1), X(2), ..., X(9),
 which solve the system of tridiagonal equations

 (3-2*X(1))*X(1) -2*X(2) = -1
 -X(I-1) + (3-2*X(I))*X(I) -2*X(I+1) = -1, I=2-8
 -X(8) + (3-2*X(9))*X(9) = -1

 PROGRAM TEST
 C
 C DRIVER FOR DNSQE EXAMPLE.
 C
 INTEGER J,N,IOPT,NPRINT,INFO,LWA,NWRITE
 DOUBLE PRECISION TOL,FNORM
 DOUBLE PRECISION X(9),FVEC(9),WA(180)
 DOUBLE PRECISION DENORM,D1MACH
 EXTERNAL FCN
 DATA NWRITE /6/
 C
 IOPT = 2
 N = 9
 C
 C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
 C
 DO 10 J = 1, 9
 X(J) = -1.E0
 10 CONTINUE

 LWA = 180
 NPRINT = 0
 C
 C SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
 C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
 C THIS IS THE RECOMMENDED SETTING.
 C
 TOL = SQRT(D1MACH(4))
 C
 CALL DNSQE(FCN,JAC,IOPT,N,X,FVEC,TOL,NPRINT,INFO,WA,LWA)
 FNORM = DENORM(N,FVEC)
 WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
 STOP
 1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
 * 5X,' EXIT PARAMETER',16X,I10 //
 * 5X,' FINAL APPROXIMATE SOLUTION' // (5X,3E15.7))
 END
 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 DOUBLE PRECISION X(N),FVEC(N)
 INTEGER K
 DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
 DATA ZERO,ONE,TWO,THREE /0.E0,1.E0,2.E0,3.E0/
 C

SLATEC3 (DACOSH through DS2Y) - 417

 DO 10 K = 1, N
 TEMP = (THREE - TWO*X(K))*X(K)
 TEMP1 = ZERO
 IF (K .NE. 1) TEMP1 = X(K-1)
 TEMP2 = ZERO
 IF (K .NE. N) TEMP2 = X(K+1)
 FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
 10 CONTINUE
 RETURN
 END

 RESULTS OBTAINED WITH DIFFERENT COMPILERS OR MACHINES
 MAY BE SLIGHTLY DIFFERENT.

 FINAL L2 NORM OF THE RESIDUALS 0.1192636E-07

 EXIT PARAMETER 1

 FINAL APPROXIMATE SOLUTION

 -0.5706545E+00 -0.6816283E+00 -0.7017325E+00
 -0.7042129E+00 -0.7013690E+00 -0.6918656E+00
 -0.6657920E+00 -0.5960342E+00 -0.4164121E+00

 ***REFERENCES M. J. D. Powell, A hybrid method for nonlinear equa-
 tions. In Numerical Methods for Nonlinear Algebraic
 Equations, P. Rabinowitz, Editor. Gordon and Breach,
 1988.
 ***ROUTINES CALLED DNSQ, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 418

DOMN

 SUBROUTINE DOMN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 + NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
 + Z, P, AP, EMAP, DZ, CSAV, RWORK, IWORK)
 ***BEGIN PROLOGUE DOMN
 ***PURPOSE Preconditioned Orthomin Sparse Iterative Ax=b Solver.
 Routine to solve a general linear system Ax = b using
 the Preconditioned Orthomin method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE DOUBLE PRECISION (SOMN-S, DOMN-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM,
 ORTHOMIN, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
 DOUBLE PRECISION P(N,0:NSAVE), AP(N,0:NSAVE), EMAP(N,0:NSAVE)
 DOUBLE PRECISION DZ(N), CSAV(NSAVE), RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL DOMN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
 $ Z, P, AP, EMAP, DZ, CSAV, RWORK, IWORK)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Double Precision B(N).
 Right-hand side vector.
 X :INOUT Double Precision X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below, for more
 details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 Y = A*X given A and X. The name of the MATVEC routine must

SLATEC3 (DACOSH through DS2Y) - 419

 be declared external in the calling program. The calling
 sequence to MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X
 upon return X is an input vector, NELT is the number of
 non-zeros in the SLAP IA, JA, A storage for the matrix A.
 ISYM is a flag which, if non-zero, denotest that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for
 Z given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a double precision array
 that can be used to pass necessary preconditioning information
 and/or workspace to MSOLVE. IWORK is an integer work array
 for the same purpose as RWORK.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize
 against. NSAVE >= 0.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /DSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Double Precision.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Double Precision.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.

SLATEC3 (DACOSH through DS2Y) - 420

 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*D1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Breakdown of method detected.
 (p,Ap) < epsilon**2.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Double Precision R(N).
 Z :WORK Double Precision Z(N).
 P :WORK Double Precision P(N,0:NSAVE).
 AP :WORK Double Precision AP(N,0:NSAVE).
 EMAP :WORK Double Precision EMAP(N,0:NSAVE).
 DZ :WORK Double Precision DZ(N).
 CSAV :WORK Double Precision CSAV(NSAVE)
 Double Precision arrays used for workspace.
 RWORK :WORK Double Precision RWORK(USER DEFINED).
 Double Precision array that can be used for workspace in
 MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used for workspace in MSOLVE.

 *Description
 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK) in some fashion. The SLAP
 routines DSDOMN and DSLUOM are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================
 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

SLATEC3 (DACOSH through DS2Y) - 421

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the double pre-
 cision array A. In other words, for each column in the
 matrix first put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
 th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
 are the last elements of the ICOL-th column. Note that we
 always have JA(N+1)=NELT+1, where N is the number of columns
 in the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO DSDOMN, DSLUOM, ISDOMN
 ***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED D1MACH, DAXPY, DCOPY, DDOT, ISDOMN
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)

SLATEC3 (DACOSH through DS2Y) - 422

 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed DSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 930326 Removed unused variable. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 423

DP1VLU

 SUBROUTINE DP1VLU (L, NDER, X, YFIT, YP, A)
 ***BEGIN PROLOGUE DP1VLU
 ***PURPOSE Use the coefficients generated by DPOLFT to evaluate the
 polynomial fit of degree L, along with the first NDER of
 its derivatives, at a specified point.
 ***LIBRARY SLATEC
 ***CATEGORY K6
 ***TYPE DOUBLE PRECISION (PVALUE-S, DP1VLU-D)
 ***KEYWORDS CURVE FITTING, LEAST SQUARES, POLYNOMIAL APPROXIMATION
 ***AUTHOR Shampine, L. F., (SNLA)
 Davenport, S. M., (SNLA)
 ***DESCRIPTION

 Abstract

 The subroutine DP1VLU uses the coefficients generated by DPOLFT
 to evaluate the polynomial fit of degree L , along with the first
 NDER of its derivatives, at a specified point. Computationally
 stable recurrence relations are used to perform this task.

 The parameters for DP1VLU are

 Input -- ALL TYPE REAL variables are DOUBLE PRECISION
 L - the degree of polynomial to be evaluated. L may be
 any non-negative integer which is less than or equal
 to NDEG , the highest degree polynomial provided
 by DPOLFT .
 NDER - the number of derivatives to be evaluated. NDER
 may be 0 or any positive value. If NDER is less
 than 0, it will be treated as 0.
 X - the argument at which the polynomial and its
 derivatives are to be evaluated.
 A - work and output array containing values from last
 call to DPOLFT .

 Output -- ALL TYPE REAL variables are DOUBLE PRECISION
 YFIT - value of the fitting polynomial of degree L at X
 YP - array containing the first through NDER derivatives
 of the polynomial of degree L . YP must be
 dimensioned at least NDER in the calling program.

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 424

DPBCO

 SUBROUTINE DPBCO (ABD, LDA, N, M, RCOND, Z, INFO)
 ***BEGIN PROLOGUE DPBCO
 ***PURPOSE Factor a real symmetric positive definite matrix stored in
 band form and estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B2
 ***TYPE DOUBLE PRECISION (SPBCO-S, DPBCO-D, CPBCO-C)
 ***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPBCO factors a double precision symmetric positive definite
 matrix stored in band form and estimates the condition of the
 matrix.

 If RCOND is not needed, DPBFA is slightly faster.
 To solve A*X = B , follow DPBCO by DPBSL.
 To compute INVERSE(A)*C , follow DPBCO by DPBSL.
 To compute DETERMINANT(A) , follow DPBCO by DPBDI.

 On Entry

 ABD DOUBLE PRECISION(LDA, N)
 the matrix to be factored. The columns of the upper
 triangle are stored in the columns of ABD and the
 diagonals of the upper triangle are stored in the
 rows of ABD . See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. M + 1 .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.
 0 .LE. M .LT. N .

 On Return

 ABD an upper triangular matrix R , stored in band
 form, so that A = TRANS(R)*R .
 If INFO .NE. 0 , the factorization is not complete.

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate

SLATEC3 (DACOSH through DS2Y) - 425

 underflows. If INFO .NE. 0 , RCOND is unchanged.

 Z DOUBLE PRECISION(N)
 a work vector whose contents are usually unimportant.
 If A is singular to working precision, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 Band Storage

 If A is a symmetric positive definite band matrix,
 the following program segment will set up the input.

 M = (band width above diagonal)
 DO 20 J = 1, N
 I1 = MAX(1, J-M)
 DO 10 I = I1, J
 K = I-J+M+1
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses M + 1 rows of A , except for the M by M
 upper left triangle, which is ignored.

 Example: If the original matrix is

 11 12 13 0 0 0
 12 22 23 24 0 0
 13 23 33 34 35 0
 0 24 34 44 45 46
 0 0 35 45 55 56
 0 0 0 46 56 66

 then N = 6 , M = 2 and ABD should contain

 * * 13 24 35 46
 * 12 23 34 45 56
 11 22 33 44 55 66

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DDOT, DPBFA, DSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 426

DPBDI

 SUBROUTINE DPBDI (ABD, LDA, N, M, DET)
 ***BEGIN PROLOGUE DPBDI
 ***PURPOSE Compute the determinant of a symmetric positive definite
 band matrix using the factors computed by DPBCO or DPBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D3B2
 ***TYPE DOUBLE PRECISION (SPBDI-S, DPBDI-D, CPBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
 MATRIX, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPBDI computes the determinant
 of a double precision symmetric positive definite band matrix
 using the factors computed by DPBCO or DPBFA.
 If the inverse is needed, use DPBSL N times.

 On Entry

 ABD DOUBLE PRECISION(LDA, N)
 the output from DPBCO or DPBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.

 On Return

 DET DOUBLE PRECISION(2)
 determinant of original matrix in the form
 DETERMINANT = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 427

DPBFA

 SUBROUTINE DPBFA (ABD, LDA, N, M, INFO)
 ***BEGIN PROLOGUE DPBFA
 ***PURPOSE Factor a real symmetric positive definite matrix stored in
 in band form.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B2
 ***TYPE DOUBLE PRECISION (SPBFA-S, DPBFA-D, CPBFA-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPBFA factors a double precision symmetric positive definite
 matrix stored in band form.

 DPBFA is usually called by DPBCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABD DOUBLE PRECISION(LDA, N)
 the matrix to be factored. The columns of the upper
 triangle are stored in the columns of ABD and the
 diagonals of the upper triangle are stored in the
 rows of ABD . See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. M + 1 .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.
 0 .LE. M .LT. N .

 On Return

 ABD an upper triangular matrix R , stored in band
 form, so that A = TRANS(R)*R .

 INFO INTEGER
 = 0 for normal return.
 = K if the leading minor of order K is not
 positive definite.

 Band Storage

 If A is a symmetric positive definite band matrix,
 the following program segment will set up the input.

 M = (band width above diagonal)
 DO 20 J = 1, N
 I1 = MAX(1, J-M)
 DO 10 I = I1, J

SLATEC3 (DACOSH through DS2Y) - 428

 K = I-J+M+1
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 429

DPBSL

 SUBROUTINE DPBSL (ABD, LDA, N, M, B)
 ***BEGIN PROLOGUE DPBSL
 ***PURPOSE Solve a real symmetric positive definite band system
 using the factors computed by DPBCO or DPBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B2
 ***TYPE DOUBLE PRECISION (SPBSL-S, DPBSL-D, CPBSL-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPBSL solves the double precision symmetric positive definite
 band system A*X = B
 using the factors computed by DPBCO or DPBFA.

 On Entry

 ABD DOUBLE PRECISION(LDA, N)
 the output from DPBCO or DPBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.

 B DOUBLE PRECISION(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically this indicates
 singularity, but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly, and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL DPBCO(ABD,LDA,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL DPBSL(ABD,LDA,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT

SLATEC3 (DACOSH through DS2Y) - 430

 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 431

DPCHBS

 SUBROUTINE DPCHBS (N, X, F, D, INCFD, KNOTYP, NKNOTS, T, BCOEF,
 + NDIM, KORD, IERR)
 ***BEGIN PROLOGUE DPCHBS
 ***PURPOSE Piecewise Cubic Hermite to B-Spline converter.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3
 ***TYPE DOUBLE PRECISION (PCHBS-S, DPCHBS-D)
 ***KEYWORDS B-SPLINES, CONVERSION, CUBIC HERMITE INTERPOLATION,
 PIECEWISE CUBIC INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Computing and Mathematics Research Division
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 *Usage:

 INTEGER N, INCFD, KNOTYP, NKNOTS, NDIM, KORD, IERR
 PARAMETER (INCFD = ...)
 DOUBLE PRECISION X(nmax), F(INCFD,nmax), D(INCFD,nmax),
 * T(2*nmax+4), BCOEF(2*nmax)

 CALL DPCHBS (N, X, F, D, INCFD, KNOTYP, NKNOTS, T, BCOEF,
 * NDIM, KORD, IERR)

 *Arguments:

 N:IN is the number of data points, N.ge.2 . (not checked)

 X:IN is the real array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N. (not checked)
 nmax, the dimension of X, must be .ge.N.

 F:IN is the real array of dependent variable values.
 F(1+(I-1)*INCFD) is the value corresponding to X(I).
 nmax, the second dimension of F, must be .ge.N.

 D:IN is the real array of derivative values at the data points.
 D(1+(I-1)*INCFD) is the value corresponding to X(I).
 nmax, the second dimension of D, must be .ge.N.

 INCFD:IN is the increment between successive values in F and D.
 This argument is provided primarily for 2-D applications.
 It may have the value 1 for one-dimensional applications,
 in which case F and D may be singly-subscripted arrays.

 KNOTYP:IN is a flag to control the knot sequence.
 The knot sequence T is normally computed from X by putting
 a double knot at each X and setting the end knot pairs
 according to the value of KNOTYP:
 KNOTYP = 0: Quadruple knots at X(1) and X(N). (default)
 KNOTYP = 1: Replicate lengths of extreme subintervals:
 T(1) = T(2) = X(1) - (X(2)-X(1)) ;

SLATEC3 (DACOSH through DS2Y) - 432

 T(M+4) = T(M+3) = X(N) + (X(N)-X(N-1)).
 KNOTYP = 2: Periodic placement of boundary knots:
 T(1) = T(2) = X(1) - (X(N)-X(N-1));
 T(M+4) = T(M+3) = X(N) + (X(2)-X(1)) .
 Here M=NDIM=2*N.
 If the input value of KNOTYP is negative, however, it is
 assumed that NKNOTS and T were set in a previous call.
 This option is provided for improved efficiency when used
 in a parametric setting.

 NKNOTS:INOUT is the number of knots.
 If KNOTYP.GE.0, then NKNOTS will be set to NDIM+4.
 If KNOTYP.LT.0, then NKNOTS is an input variable, and an
 error return will be taken if it is not equal to NDIM+4.

 T:INOUT is the array of 2*N+4 knots for the B-representation.
 If KNOTYP.GE.0, T will be returned by DPCHBS with the
 interior double knots equal to the X-values and the
 boundary knots set as indicated above.
 If KNOTYP.LT.0, it is assumed that T was set by a
 previous call to DPCHBS. (This routine does **not**
 verify that T forms a legitimate knot sequence.)

 BCOEF:OUT is the array of 2*N B-spline coefficients.

 NDIM:OUT is the dimension of the B-spline space. (Set to 2*N.)

 KORD:OUT is the order of the B-spline. (Set to 4.)

 IERR:OUT is an error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -4 if KNOTYP.GT.2 .
 IERR = -5 if KNOTYP.LT.0 and NKNOTS.NE.(2*N+4).

 *Description:
 DPCHBS computes the B-spline representation of the PCH function
 determined by N,X,F,D. To be compatible with the rest of PCHIP,
 DPCHBS includes INCFD, the increment between successive values of
 the F- and D-arrays.

 The output is the B-representation for the function: NKNOTS, T,
 BCOEF, NDIM, KORD.

 *Caution:
 Since it is assumed that the input PCH function has been
 computed by one of the other routines in the package PCHIP,
 input arguments N, X, INCFD are **not** checked for validity.

 *Restrictions/assumptions:
 1. N.GE.2 . (not checked)
 2. X(i).LT.X(i+1), i=1,...,N . (not checked)
 3. INCFD.GT.0 . (not checked)
 4. KNOTYP.LE.2 . (error return if not)
 *5. NKNOTS = NDIM+4 = 2*N+4 . (error return if not)
 *6. T(2*k+1) = T(2*k) = X(k), k=1,...,N . (not checked)

 * Indicates this applies only if KNOTYP.LT.0 .

SLATEC3 (DACOSH through DS2Y) - 433

 *Portability:
 Argument INCFD is used only to cause the compiler to generate
 efficient code for the subscript expressions (1+(I-1)*INCFD) .
 The normal usage, in which DPCHBS is called with one-dimensional
 arrays F and D, is probably non-Fortran 77, in the strict sense,
 but it works on all systems on which DPCHBS has been tested.

 *See Also:
 PCHIC, PCHIM, or PCHSP can be used to determine an interpolating
 PCH function from a set of data.
 The B-spline routine DBVALU can be used to evaluate the
 B-representation that is output by DPCHBS.
 (See BSPDOC for more information.)

 ***REFERENCES F. N. Fritsch, "Representations for parametric cubic
 splines," Computer Aided Geometric Design 6 (1989),
 pp.79-82.
 ***ROUTINES CALLED DPCHKT, XERMSG
 ***REVISION HISTORY (YYMMDD)
 870701 DATE WRITTEN
 900405 Converted Fortran to upper case.
 900405 Removed requirement that X be dimensioned N+1.
 900406 Modified to make PCHKT a subsidiary routine to simplify
 usage. In the process, added argument INCFD to be com-
 patible with the rest of PCHIP.
 900410 Converted prologue to SLATEC 4.0 format.
 900410 Added calls to XERMSG and changed constant 3. to 3 to
 reduce single/double differences.
 900411 Added reference.
 900430 Produced double precision version.
 900501 Corrected declarations.
 930317 Minor cosmetic changes. (FNF)
 930514 Corrected problems with dimensioning of arguments and
 clarified DESCRIPTION. (FNF)
 930604 Removed NKNOTS from DPCHKT call list. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 434

DPCHCM

 SUBROUTINE DPCHCM (N, X, F, D, INCFD, SKIP, ISMON, IERR)
 ***BEGIN PROLOGUE DPCHCM
 ***PURPOSE Check a cubic Hermite function for monotonicity.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3
 ***TYPE DOUBLE PRECISION (PCHCM-S, DPCHCM-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
 PCHIP, PIECEWISE CUBIC INTERPOLATION, UTILITY ROUTINE
 ***AUTHOR Fritsch, F. N., (LLNL)
 Computing & Mathematics Research Division
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 *Usage:

 PARAMETER (INCFD = ...)
 INTEGER N, ISMON(N), IERR
 DOUBLE PRECISION X(N), F(INCFD,N), D(INCFD,N)
 LOGICAL SKIP

 CALL DPCHCM (N, X, F, D, INCFD, SKIP, ISMON, IERR)

 *Arguments:

 N:IN is the number of data points. (Error return if N.LT.2 .)

 X:IN is a real*8 array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F:IN is a real*8 array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D:IN is a real*8 array of derivative values. D(1+(I-1)*INCFD) is
 is the value corresponding to X(I).

 INCFD:IN is the increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

 SKIP:INOUT is a logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of
 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed.
 SKIP will be set to .TRUE. on normal return.

 ISMON:OUT is an integer array indicating on which intervals the
 PCH function defined by N, X, F, D is monotonic.
 For data interval [X(I),X(I+1)],
 ISMON(I) = -3 if function is probably decreasing;
 ISMON(I) = -1 if function is strictly decreasing;
 ISMON(I) = 0 if function is constant;

SLATEC3 (DACOSH through DS2Y) - 435

 ISMON(I) = 1 if function is strictly increasing;
 ISMON(I) = 2 if function is non-monotonic;
 ISMON(I) = 3 if function is probably increasing.
 If ABS(ISMON)=3, this means that the D-values are near
 the boundary of the monotonicity region. A small
 increase produces non-monotonicity; decrease, strict
 monotonicity.
 The above applies to I=1(1)N-1. ISMON(N) indicates whether
 the entire function is monotonic on [X(1),X(N)].

 IERR:OUT is an error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 (The ISMON-array has not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 *Description:

 DPCHCM: Piecewise Cubic Hermite -- Check Monotonicity.

 Checks the piecewise cubic Hermite function defined by N,X,F,D
 for monotonicity.

 To provide compatibility with DPCHIM and DPCHIC, includes an
 increment between successive values of the F- and D-arrays.

 *Cautions:
 This provides the same capability as old DPCHMC, except that a
 new output value, -3, was added February 1989. (Formerly, -3
 and +3 were lumped together in the single value 3.) Codes that
 flag nonmonotonicity by "IF (ISMON.EQ.2)" need not be changed.
 Codes that check via "IF (ISMON.GE.3)" should change the test to
 "IF (IABS(ISMON).GE.3)". Codes that declare monotonicity via
 "IF (ISMON.LE.1)" should change to "IF (IABS(ISMON).LE.1)".

 ***REFERENCES F. N. Fritsch and R. E. Carlson, Monotone piecewise
 cubic interpolation, SIAM Journal on Numerical Ana-
 lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED DCHFCM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820518 DATE WRITTEN
 820804 Converted to SLATEC library version.
 831201 Reversed order of subscripts of F and D, so that the
 routine will work properly when INCFD.GT.1 . (Bug!)
 870707 Corrected XERROR calls for d.p. name(s).
 890206 Corrected XERROR calls.
 890209 Added possible ISMON value of -3 and modified code so
 that 1,3,-1 produces ISMON(N)=2, rather than 3.
 890306 Added caution about changed output.
 890407 Changed name from DPCHMC to DPCHCM, as requested at the
 March 1989 SLATEC CML meeting, and made a few other
 minor modifications necessitated by this change.
 890407 Converted to new SLATEC format.
 890407 Modified DESCRIPTION to LDOC format.
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)

SLATEC3 (DACOSH through DS2Y) - 436

 920429 Revised format and order of references. (WRB,FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 437

DPCHFD

 SUBROUTINE DPCHFD (N, X, F, D, INCFD, SKIP, NE, XE, FE, DE, IERR)
 ***BEGIN PROLOGUE DPCHFD
 ***PURPOSE Evaluate a piecewise cubic Hermite function and its first
 derivative at an array of points. May be used by itself
 for Hermite interpolation, or as an evaluator for DPCHIM
 or DPCHIC. If only function values are required, use
 DPCHFE instead.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3, H1
 ***TYPE DOUBLE PRECISION (PCHFD-S, DPCHFD-D)
 ***KEYWORDS CUBIC HERMITE DIFFERENTIATION, CUBIC HERMITE EVALUATION,
 HERMITE INTERPOLATION, PCHIP, PIECEWISE CUBIC EVALUATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DPCHFD: Piecewise Cubic Hermite Function and Derivative
 evaluator

 Evaluates the cubic Hermite function defined by N, X, F, D, to-
 gether with its first derivative, at the points XE(J), J=1(1)NE.

 If only function values are required, use DPCHFE, instead.

 To provide compatibility with DPCHIM and DPCHIC, includes an
 increment between successive values of the F- and D-arrays.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, NE, IERR
 DOUBLE PRECISION X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE),
 DE(NE)
 LOGICAL SKIP

 CALL DPCHFD (N, X, F, D, INCFD, SKIP, NE, XE, FE, DE, IERR)

 Parameters:

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real*8 array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real*8 array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D -- (input) real*8 array of derivative values. D(1+(I-1)*INCFD)
 is the value corresponding to X(I).

SLATEC3 (DACOSH through DS2Y) - 438

 INCFD -- (input) increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

 SKIP -- (input/output) logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of
 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed (say, in DPCHIM or DPCHIC).
 SKIP will be set to .TRUE. on normal return.

 NE -- (input) number of evaluation points. (Error return if
 NE.LT.1 .)

 XE -- (input) real*8 array of points at which the functions are to
 be evaluated.

 NOTES:
 1. The evaluation will be most efficient if the elements
 of XE are increasing relative to X;
 that is, XE(J) .GE. X(I)
 implies XE(K) .GE. X(I), all K.GE.J .
 2. If any of the XE are outside the interval [X(1),X(N)],
 values are extrapolated from the nearest extreme cubic,
 and a warning error is returned.

 FE -- (output) real*8 array of values of the cubic Hermite
 function defined by N, X, F, D at the points XE.

 DE -- (output) real*8 array of values of the first derivative of
 the same function at the points XE.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning error:
 IERR.GT.0 means that extrapolation was performed at
 IERR points.
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if NE.LT.1 .
 (Output arrays have not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.
 IERR = -5 if an error has occurred in the lower-level
 routine DCHFDV. NB: this should never happen.
 Notify the author **IMMEDIATELY** if it does.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCHFDV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 811020 DATE WRITTEN
 820803 Minor cosmetic changes for release 1.
 870707 Corrected XERROR calls for d.p. name(s).
 890206 Corrected XERROR calls.
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)

SLATEC3 (DACOSH through DS2Y) - 439

 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 440

DPCHFE

 SUBROUTINE DPCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
 ***BEGIN PROLOGUE DPCHFE
 ***PURPOSE Evaluate a piecewise cubic Hermite function at an array of
 points. May be used by itself for Hermite interpolation,
 or as an evaluator for DPCHIM or DPCHIC.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3
 ***TYPE DOUBLE PRECISION (PCHFE-S, DPCHFE-D)
 ***KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP,
 PIECEWISE CUBIC EVALUATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DPCHFE: Piecewise Cubic Hermite Function Evaluator

 Evaluates the cubic Hermite function defined by N, X, F, D at
 the points XE(J), J=1(1)NE.

 To provide compatibility with DPCHIM and DPCHIC, includes an
 increment between successive values of the F- and D-arrays.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, NE, IERR
 DOUBLE PRECISION X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE)
 LOGICAL SKIP

 CALL DPCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)

 Parameters:

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real*8 array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real*8 array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D -- (input) real*8 array of derivative values. D(1+(I-1)*INCFD)
 is the value corresponding to X(I).

 INCFD -- (input) increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

 SKIP -- (input/output) logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of

SLATEC3 (DACOSH through DS2Y) - 441

 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed (say, in DPCHIM or DPCHIC).
 SKIP will be set to .TRUE. on normal return.

 NE -- (input) number of evaluation points. (Error return if
 NE.LT.1 .)

 XE -- (input) real*8 array of points at which the function is to
 be evaluated.

 NOTES:
 1. The evaluation will be most efficient if the elements
 of XE are increasing relative to X;
 that is, XE(J) .GE. X(I)
 implies XE(K) .GE. X(I), all K.GE.J .
 2. If any of the XE are outside the interval [X(1),X(N)],
 values are extrapolated from the nearest extreme cubic,
 and a warning error is returned.

 FE -- (output) real*8 array of values of the cubic Hermite
 function defined by N, X, F, D at the points XE.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning error:
 IERR.GT.0 means that extrapolation was performed at
 IERR points.
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if NE.LT.1 .
 (The FE-array has not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCHFEV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 811020 DATE WRITTEN
 820803 Minor cosmetic changes for release 1.
 870707 Corrected XERROR calls for d.p. name(s).
 890206 Corrected XERROR calls.
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 442

DPCHIA

 DOUBLE PRECISION FUNCTION DPCHIA (N, X, F, D, INCFD, SKIP, A, B,
 + IERR)
 ***BEGIN PROLOGUE DPCHIA
 ***PURPOSE Evaluate the definite integral of a piecewise cubic
 Hermite function over an arbitrary interval.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3, H2A1B2
 ***TYPE DOUBLE PRECISION (PCHIA-S, DPCHIA-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, NUMERICAL INTEGRATION, PCHIP,
 QUADRATURE
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DPCHIA: Piecewise Cubic Hermite Integrator, Arbitrary limits

 Evaluates the definite integral of the cubic Hermite function
 defined by N, X, F, D over the interval [A, B].

 To provide compatibility with DPCHIM and DPCHIC, includes an
 increment between successive values of the F- and D-arrays.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, IERR
 DOUBLE PRECISION X(N), F(INCFD,N), D(INCFD,N), A, B
 DOUBLE PRECISION VALUE, DPCHIA
 LOGICAL SKIP

 VALUE = DPCHIA (N, X, F, D, INCFD, SKIP, A, B, IERR)

 Parameters:

 VALUE -- (output) value of the requested integral.

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real*8 array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real*8 array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D -- (input) real*8 array of derivative values. D(1+(I-1)*INCFD)
 is the value corresponding to X(I).

 INCFD -- (input) increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

SLATEC3 (DACOSH through DS2Y) - 443

 SKIP -- (input/output) logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of
 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed (say, in DPCHIM or DPCHIC).
 SKIP will be set to .TRUE. on return with IERR.GE.0 .

 A,B -- (input) the limits of integration.
 NOTE: There is no requirement that [A,B] be contained in
 [X(1),X(N)]. However, the resulting integral value
 will be highly suspect, if not.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning errors:
 IERR = 1 if A is outside the interval [X(1),X(N)].
 IERR = 2 if B is outside the interval [X(1),X(N)].
 IERR = 3 if both of the above are true. (Note that this
 means that either [A,B] contains data interval
 or the intervals do not intersect at all.)
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 (VALUE will be zero in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.
 IERR = -4 in case of an error return from DPCHID (which
 should never occur).

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCHFIE, DPCHID, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820730 DATE WRITTEN
 820804 Converted to SLATEC library version.
 870707 Corrected XERROR calls for d.p. name(s).
 870707 Corrected conversion to double precision.
 870813 Minor cosmetic changes.
 890206 Corrected XERROR calls.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 930503 Corrected to set VALUE=0 when IERR.lt.0. (FNF)
 930504 Changed DCHFIV to DCHFIE. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 444

DPCHIC

 SUBROUTINE DPCHIC (IC, VC, SWITCH, N, X, F, D, INCFD, WK, NWK,
 + IERR)
 ***BEGIN PROLOGUE DPCHIC
 ***PURPOSE Set derivatives needed to determine a piecewise monotone
 piecewise cubic Hermite interpolant to given data.
 User control is available over boundary conditions and/or
 treatment of points where monotonicity switches direction.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E1A
 ***TYPE DOUBLE PRECISION (PCHIC-S, DPCHIC-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
 PCHIP, PIECEWISE CUBIC INTERPOLATION,
 SHAPE-PRESERVING INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DPCHIC: Piecewise Cubic Hermite Interpolation Coefficients.

 Sets derivatives needed to determine a piecewise monotone piece-
 wise cubic interpolant to the data given in X and F satisfying the
 boundary conditions specified by IC and VC.

 The treatment of points where monotonicity switches direction is
 controlled by argument SWITCH.

 To facilitate two-dimensional applications, includes an increment
 between successive values of the F- and D-arrays.

 The resulting piecewise cubic Hermite function may be evaluated
 by DPCHFE or DPCHFD.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER IC(2), N, NWK, IERR
 DOUBLE PRECISION VC(2), SWITCH, X(N), F(INCFD,N), D(INCFD,N),
 WK(NWK)

 CALL DPCHIC (IC, VC, SWITCH, N, X, F, D, INCFD, WK, NWK, IERR)

 Parameters:

 IC -- (input) integer array of length 2 specifying desired
 boundary conditions:
 IC(1) = IBEG, desired condition at beginning of data.
 IC(2) = IEND, desired condition at end of data.

 IBEG = 0 for the default boundary condition (the same as
 used by DPCHIM).
 If IBEG.NE.0, then its sign indicates whether the boundary

SLATEC3 (DACOSH through DS2Y) - 445

 derivative is to be adjusted, if necessary, to be
 compatible with monotonicity:
 IBEG.GT.0 if no adjustment is to be performed.
 IBEG.LT.0 if the derivative is to be adjusted for
 monotonicity.

 Allowable values for the magnitude of IBEG are:
 IBEG = 1 if first derivative at X(1) is given in VC(1).
 IBEG = 2 if second derivative at X(1) is given in VC(1).
 IBEG = 3 to use the 3-point difference formula for D(1).
 (Reverts to the default b.c. if N.LT.3 .)
 IBEG = 4 to use the 4-point difference formula for D(1).
 (Reverts to the default b.c. if N.LT.4 .)
 IBEG = 5 to set D(1) so that the second derivative is con-
 tinuous at X(2). (Reverts to the default b.c. if N.LT.4.)
 This option is somewhat analogous to the "not a knot"
 boundary condition provided by DPCHSP.

 NOTES (IBEG):
 1. An error return is taken if ABS(IBEG).GT.5 .
 2. Only in case IBEG.LE.0 is it guaranteed that the
 interpolant will be monotonic in the first interval.
 If the returned value of D(1) lies between zero and
 3*SLOPE(1), the interpolant will be monotonic. This
 is **NOT** checked if IBEG.GT.0 .
 3. If IBEG.LT.0 and D(1) had to be changed to achieve mono-
 tonicity, a warning error is returned.

 IEND may take on the same values as IBEG, but applied to
 derivative at X(N). In case IEND = 1 or 2, the value is
 given in VC(2).

 NOTES (IEND):
 1. An error return is taken if ABS(IEND).GT.5 .
 2. Only in case IEND.LE.0 is it guaranteed that the
 interpolant will be monotonic in the last interval.
 If the returned value of D(1+(N-1)*INCFD) lies between
 zero and 3*SLOPE(N-1), the interpolant will be monotonic.
 This is **NOT** checked if IEND.GT.0 .
 3. If IEND.LT.0 and D(1+(N-1)*INCFD) had to be changed to
 achieve monotonicity, a warning error is returned.

 VC -- (input) real*8 array of length 2 specifying desired boundary
 values, as indicated above.
 VC(1) need be set only if IC(1) = 1 or 2 .
 VC(2) need be set only if IC(2) = 1 or 2 .

 SWITCH -- (input) indicates desired treatment of points where
 direction of monotonicity switches:
 Set SWITCH to zero if interpolant is required to be mono-
 tonic in each interval, regardless of monotonicity of data.
 NOTES:
 1. This will cause D to be set to zero at all switch
 points, thus forcing extrema there.
 2. The result of using this option with the default boun-
 dary conditions will be identical to using DPCHIM, but
 will generally cost more compute time.
 This option is provided only to facilitate comparison
 of different switch and/or boundary conditions.
 Set SWITCH nonzero to use a formula based on the 3-point

SLATEC3 (DACOSH through DS2Y) - 446

 difference formula in the vicinity of switch points.
 If SWITCH is positive, the interpolant on each interval
 containing an extremum is controlled to not deviate from
 the data by more than SWITCH*DFLOC, where DFLOC is the
 maximum of the change of F on this interval and its two
 immediate neighbors.
 If SWITCH is negative, no such control is to be imposed.

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real*8 array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real*8 array of dependent variable values to be
 interpolated. F(1+(I-1)*INCFD) is value corresponding to
 X(I).

 D -- (output) real*8 array of derivative values at the data
 points. These values will determine a monotone cubic
 Hermite function on each subinterval on which the data
 are monotonic, except possibly adjacent to switches in
 monotonicity. The value corresponding to X(I) is stored in
 D(1+(I-1)*INCFD), I=1(1)N.
 No other entries in D are changed.

 INCFD -- (input) increment between successive values in F and D.
 This argument is provided primarily for 2-D applications.
 (Error return if INCFD.LT.1 .)

 WK -- (scratch) real*8 array of working storage. The user may
 wish to know that the returned values are:
 WK(I) = H(I) = X(I+1) - X(I) ;
 WK(N-1+I) = SLOPE(I) = (F(1,I+1) - F(1,I)) / H(I)
 for I = 1(1)N-1.

 NWK -- (input) length of work array.
 (Error return if NWK.LT.2*(N-1) .)

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning errors:
 IERR = 1 if IBEG.LT.0 and D(1) had to be adjusted for
 monotonicity.
 IERR = 2 if IEND.LT.0 and D(1+(N-1)*INCFD) had to be
 adjusted for monotonicity.
 IERR = 3 if both of the above are true.
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if ABS(IBEG).GT.5 .
 IERR = -5 if ABS(IEND).GT.5 .
 IERR = -6 if both of the above are true.
 IERR = -7 if NWK.LT.2*(N-1) .
 (The D-array has not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

SLATEC3 (DACOSH through DS2Y) - 447

 ***REFERENCES 1. F. N. Fritsch, Piecewise Cubic Hermite Interpolation
 Package, Report UCRL-87285, Lawrence Livermore Natio-
 nal Laboratory, July 1982. [Poster presented at the
 SIAM 30th Anniversary Meeting, 19-23 July 1982.]
 2. F. N. Fritsch and J. Butland, A method for construc-
 ting local monotone piecewise cubic interpolants, SIAM
 Journal on Scientific and Statistical Computing 5, 2
 (June 1984), pp. 300-304.
 3. F. N. Fritsch and R. E. Carlson, Monotone piecewise
 cubic interpolation, SIAM Journal on Numerical Ana-
 lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED DPCHCE, DPCHCI, DPCHCS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820218 DATE WRITTEN
 820804 Converted to SLATEC library version.
 870707 Corrected XERROR calls for d.p. name(s).
 870813 Updated Reference 2.
 890206 Corrected XERROR calls.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920429 Revised format and order of references. (WRB,FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 448

DPCHID

 DOUBLE PRECISION FUNCTION DPCHID (N, X, F, D, INCFD, SKIP, IA, IB,
 + IERR)
 ***BEGIN PROLOGUE DPCHID
 ***PURPOSE Evaluate the definite integral of a piecewise cubic
 Hermite function over an interval whose endpoints are data
 points.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3, H2A1B2
 ***TYPE DOUBLE PRECISION (PCHID-S, DPCHID-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, NUMERICAL INTEGRATION, PCHIP,
 QUADRATURE
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DPCHID: Piecewise Cubic Hermite Integrator, Data limits

 Evaluates the definite integral of the cubic Hermite function
 defined by N, X, F, D over the interval [X(IA), X(IB)].

 To provide compatibility with DPCHIM and DPCHIC, includes an
 increment between successive values of the F- and D-arrays.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, IA, IB, IERR
 DOUBLE PRECISION X(N), F(INCFD,N), D(INCFD,N)
 LOGICAL SKIP

 VALUE = DPCHID (N, X, F, D, INCFD, SKIP, IA, IB, IERR)

 Parameters:

 VALUE -- (output) value of the requested integral.

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real*8 array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real*8 array of function values. F(1+(I-1)*INCFD) is
 the value corresponding to X(I).

 D -- (input) real*8 array of derivative values. D(1+(I-1)*INCFD)
 is the value corresponding to X(I).

 INCFD -- (input) increment between successive values in F and D.
 (Error return if INCFD.LT.1 .)

SLATEC3 (DACOSH through DS2Y) - 449

 SKIP -- (input/output) logical variable which should be set to
 .TRUE. if the user wishes to skip checks for validity of
 preceding parameters, or to .FALSE. otherwise.
 This will save time in case these checks have already
 been performed (say, in DPCHIM or DPCHIC).
 SKIP will be set to .TRUE. on return with IERR = 0 or -4.

 IA,IB -- (input) indices in X-array for the limits of integration.
 both must be in the range [1,N]. (Error return if not.)
 No restrictions on their relative values.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if IA or IB is out of range.
 (VALUE will be zero in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 820723 DATE WRITTEN
 820804 Converted to SLATEC library version.
 870707 Corrected XERROR calls for d.p. name(s).
 870813 Minor cosmetic changes.
 890206 Corrected XERROR calls.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 930504 Corrected to set VALUE=0 when IERR.ne.0. (FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 450

DPCHIM

 SUBROUTINE DPCHIM (N, X, F, D, INCFD, IERR)
 ***BEGIN PROLOGUE DPCHIM
 ***PURPOSE Set derivatives needed to determine a monotone piecewise
 cubic Hermite interpolant to given data. Boundary values
 are provided which are compatible with monotonicity. The
 interpolant will have an extremum at each point where mono-
 tonicity switches direction. (See DPCHIC if user control
 is desired over boundary or switch conditions.)
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E1A
 ***TYPE DOUBLE PRECISION (PCHIM-S, DPCHIM-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
 PCHIP, PIECEWISE CUBIC INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DPCHIM: Piecewise Cubic Hermite Interpolation to
 Monotone data.

 Sets derivatives needed to determine a monotone piecewise cubic
 Hermite interpolant to the data given in X and F.

 Default boundary conditions are provided which are compatible
 with monotonicity. (See DPCHIC if user control of boundary con-
 ditions is desired.)

 If the data are only piecewise monotonic, the interpolant will
 have an extremum at each point where monotonicity switches direc-
 tion. (See DPCHIC if user control is desired in such cases.)

 To facilitate two-dimensional applications, includes an increment
 between successive values of the F- and D-arrays.

 The resulting piecewise cubic Hermite function may be evaluated
 by DPCHFE or DPCHFD.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER N, IERR
 DOUBLE PRECISION X(N), F(INCFD,N), D(INCFD,N)

 CALL DPCHIM (N, X, F, D, INCFD, IERR)

 Parameters:

 N -- (input) number of data points. (Error return if N.LT.2 .)
 If N=2, simply does linear interpolation.

 X -- (input) real*8 array of independent variable values. The

SLATEC3 (DACOSH through DS2Y) - 451

 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real*8 array of dependent variable values to be
 interpolated. F(1+(I-1)*INCFD) is value corresponding to
 X(I). DPCHIM is designed for monotonic data, but it will
 work for any F-array. It will force extrema at points where
 monotonicity switches direction. If some other treatment of
 switch points is desired, DPCHIC should be used instead.

 D -- (output) real*8 array of derivative values at the data
 points. If the data are monotonic, these values will
 determine a monotone cubic Hermite function.
 The value corresponding to X(I) is stored in
 D(1+(I-1)*INCFD), I=1(1)N.
 No other entries in D are changed.

 INCFD -- (input) increment between successive values in F and D.
 This argument is provided primarily for 2-D applications.
 (Error return if INCFD.LT.1 .)

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 Warning error:
 IERR.GT.0 means that IERR switches in the direction
 of monotonicity were detected.
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 (The D-array has not been changed in any of these cases.)
 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.

 ***REFERENCES 1. F. N. Fritsch and J. Butland, A method for construc-
 ting local monotone piecewise cubic interpolants, SIAM
 Journal on Scientific and Statistical Computing 5, 2
 (June 1984), pp. 300-304.
 2. F. N. Fritsch and R. E. Carlson, Monotone piecewise
 cubic interpolation, SIAM Journal on Numerical Ana-
 lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED DPCHST, XERMSG
 ***REVISION HISTORY (YYMMDD)
 811103 DATE WRITTEN
 820201 1. Introduced DPCHST to reduce possible over/under-
 flow problems.
 2. Rearranged derivative formula for same reason.
 820602 1. Modified end conditions to be continuous functions
 of data when monotonicity switches in next interval.
 2. Modified formulas so end conditions are less prone
 of over/underflow problems.
 820803 Minor cosmetic changes for release 1.
 870707 Corrected XERROR calls for d.p. name(s).
 870813 Updated Reference 1.
 890206 Corrected XERROR calls.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)

SLATEC3 (DACOSH through DS2Y) - 452

 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920429 Revised format and order of references. (WRB,FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 453

DPCHSP

 SUBROUTINE DPCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
 ***BEGIN PROLOGUE DPCHSP
 ***PURPOSE Set derivatives needed to determine the Hermite represen-
 tation of the cubic spline interpolant to given data, with
 specified boundary conditions.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E1A
 ***TYPE DOUBLE PRECISION (PCHSP-S, DPCHSP-D)
 ***KEYWORDS CUBIC HERMITE INTERPOLATION, PCHIP,
 PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 DPCHSP: Piecewise Cubic Hermite Spline

 Computes the Hermite representation of the cubic spline inter-
 polant to the data given in X and F satisfying the boundary
 conditions specified by IC and VC.

 To facilitate two-dimensional applications, includes an increment
 between successive values of the F- and D-arrays.

 The resulting piecewise cubic Hermite function may be evaluated
 by DPCHFE or DPCHFD.

 NOTE: This is a modified version of C. de Boor's cubic spline
 routine CUBSPL.

 --

 Calling sequence:

 PARAMETER (INCFD = ...)
 INTEGER IC(2), N, NWK, IERR
 DOUBLE PRECISION VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)

 CALL DPCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)

 Parameters:

 IC -- (input) integer array of length 2 specifying desired
 boundary conditions:
 IC(1) = IBEG, desired condition at beginning of data.
 IC(2) = IEND, desired condition at end of data.

 IBEG = 0 to set D(1) so that the third derivative is con-
 tinuous at X(2). This is the "not a knot" condition
 provided by de Boor's cubic spline routine CUBSPL.
 < This is the default boundary condition. >
 IBEG = 1 if first derivative at X(1) is given in VC(1).
 IBEG = 2 if second derivative at X(1) is given in VC(1).
 IBEG = 3 to use the 3-point difference formula for D(1).

SLATEC3 (DACOSH through DS2Y) - 454

 (Reverts to the default b.c. if N.LT.3 .)
 IBEG = 4 to use the 4-point difference formula for D(1).
 (Reverts to the default b.c. if N.LT.4 .)
 NOTES:
 1. An error return is taken if IBEG is out of range.
 2. For the "natural" boundary condition, use IBEG=2 and
 VC(1)=0.

 IEND may take on the same values as IBEG, but applied to
 derivative at X(N). In case IEND = 1 or 2, the value is
 given in VC(2).

 NOTES:
 1. An error return is taken if IEND is out of range.
 2. For the "natural" boundary condition, use IEND=2 and
 VC(2)=0.

 VC -- (input) real*8 array of length 2 specifying desired boundary
 values, as indicated above.
 VC(1) need be set only if IC(1) = 1 or 2 .
 VC(2) need be set only if IC(2) = 1 or 2 .

 N -- (input) number of data points. (Error return if N.LT.2 .)

 X -- (input) real*8 array of independent variable values. The
 elements of X must be strictly increasing:
 X(I-1) .LT. X(I), I = 2(1)N.
 (Error return if not.)

 F -- (input) real*8 array of dependent variable values to be
 interpolated. F(1+(I-1)*INCFD) is value corresponding to
 X(I).

 D -- (output) real*8 array of derivative values at the data
 points. These values will determine the cubic spline
 interpolant with the requested boundary conditions.
 The value corresponding to X(I) is stored in
 D(1+(I-1)*INCFD), I=1(1)N.
 No other entries in D are changed.

 INCFD -- (input) increment between successive values in F and D.
 This argument is provided primarily for 2-D applications.
 (Error return if INCFD.LT.1 .)

 WK -- (scratch) real*8 array of working storage.

 NWK -- (input) length of work array.
 (Error return if NWK.LT.2*N .)

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if N.LT.2 .
 IERR = -2 if INCFD.LT.1 .
 IERR = -3 if the X-array is not strictly increasing.
 IERR = -4 if IBEG.LT.0 or IBEG.GT.4 .
 IERR = -5 if IEND.LT.0 of IEND.GT.4 .
 IERR = -6 if both of the above are true.
 IERR = -7 if NWK is too small.

SLATEC3 (DACOSH through DS2Y) - 455

 NOTE: The above errors are checked in the order listed,
 and following arguments have **NOT** been validated.
 (The D-array has not been changed in any of these cases.)
 IERR = -8 in case of trouble solving the linear system
 for the interior derivative values.
 (The D-array may have been changed in this case.)
 (Do **NOT** use it!)

 ***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer-
 Verlag, New York, 1978, pp. 53-59.
 ***ROUTINES CALLED DPCHDF, XERMSG
 ***REVISION HISTORY (YYMMDD)
 820503 DATE WRITTEN
 820804 Converted to SLATEC library version.
 870707 Corrected XERROR calls for d.p. name(s).
 890206 Corrected XERROR calls.
 890411 Added SAVE statements (Vers. 3.2).
 890703 Corrected category record. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920429 Revised format and order of references. (WRB,FNF)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 456

DPCOEF

 SUBROUTINE DPCOEF (L, C, TC, A)
 ***BEGIN PROLOGUE DPCOEF
 ***PURPOSE Convert the DPOLFT coefficients to Taylor series form.
 ***LIBRARY SLATEC
 ***CATEGORY K1A1A2
 ***TYPE DOUBLE PRECISION (PCOEF-S, DPCOEF-D)
 ***KEYWORDS CURVE FITTING, DATA FITTING, LEAST SQUARES, POLYNOMIAL FIT
 ***AUTHOR Shampine, L. F., (SNLA)
 Davenport, S. M., (SNLA)
 ***DESCRIPTION

 Abstract

 DPOLFT computes the least squares polynomial fit of degree L as
 a sum of orthogonal polynomials. DPCOEF changes this fit to its
 Taylor expansion about any point C , i.e. writes the polynomial
 as a sum of powers of (X-C). Taking C=0. gives the polynomial
 in powers of X, but a suitable non-zero C often leads to
 polynomials which are better scaled and more accurately evaluated.

 The parameters for DPCOEF are

 INPUT -- All TYPE REAL variables are DOUBLE PRECISION
 L - Indicates the degree of polynomial to be changed to
 its Taylor expansion. To obtain the Taylor
 coefficients in reverse order, input L as the
 negative of the degree desired. The absolute value
 of L must be less than or equal to NDEG, the highest
 degree polynomial fitted by DPOLFT .
 C - The point about which the Taylor expansion is to be
 made.
 A - Work and output array containing values from last
 call to DPOLFT .

 OUTPUT -- All TYPE REAL variables are DOUBLE PRECISION
 TC - Vector containing the first LL+1 Taylor coefficients
 where LL=ABS(L). If L.GT.0 , the coefficients are
 in the usual Taylor series order, i.e.
 P(X) = TC(1) + TC(2)*(X-C) + ... + TC(N+1)*(X-C)**N
 If L .LT. 0, the coefficients are in reverse order,
 i.e.
 P(X) = TC(1)*(X-C)**N + ... + TC(N)*(X-C) + TC(N+1)

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED DP1VLU
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 457

DPFQAD

 SUBROUTINE DPFQAD (F, LDC, C, XI, LXI, K, ID, X1, X2, TOL, QUAD,
 + IERR)
 ***BEGIN PROLOGUE DPFQAD
 ***PURPOSE Compute the integral on (X1,X2) of a product of a
 function F and the ID-th derivative of a B-spline,
 (PP-representation).
 ***LIBRARY SLATEC
 ***CATEGORY H2A2A1, E3, K6
 ***TYPE DOUBLE PRECISION (PFQAD-S, DPFQAD-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, QUADRATURE, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****
 DPFQAD computes the integral on (X1,X2) of a product of a
 function F and the ID-th derivative of a B-spline, using the
 PP-representation (C,XI,LXI,K). (X1,X2) is normally a sub-
 interval of XI(1) .LE. X .LE. XI(LXI+1). An integration
 routine, DPPGQ8 (a modification of GAUS8), integrates the
 product on subintervals of (X1,X2) formed by the included
 break points. Integration outside of (XI(1),XI(LXI+1)) is
 permitted provided F is defined.

 The maximum number of significant digits obtainable in
 DBSQAD is the smaller of 18 and the number of digits
 carried in double precision arithmetic.

 Description of arguments
 Input F,C,XI,X1,X2,TOL are double precision
 F - external function of one argument for the
 integrand PF(X)=F(X)*DPPVAL(LDC,C,XI,LXI,K,ID,X,
 INPPV)
 LDC - leading dimension of matrix C, LDC .GE. K
 C(I,J) - right Taylor derivatives at XI(J), I=1,K , J=1,LXI
 XI(*) - break point array of length LXI+1
 LXI - number of polynomial pieces
 K - order of B-spline, K .GE. 1
 ID - order of the spline derivative, 0 .LE. ID .LE. K-1
 ID=0 gives the spline function
 X1,X2 - end points of quadrature interval, normally in
 XI(1) .LE. X .LE. XI(LXI+1)
 TOL - desired accuracy for the quadrature, suggest
 10.*DTOL .LT. TOL .LE. 0.1 where DTOL is the
 maximum of 1.0D-18 and double precision unit
 roundoff for the machine = D1MACH(4)

 Output QUAD is double precision
 QUAD - integral of PF(X) on (X1,X2)
 IERR - a status code
 IERR=1 normal return
 2 some quadrature does not meet the
 requested tolerance

 Error Conditions
 Improper input is a fatal error.
 Some quadrature does not meet the requested tolerance.

SLATEC3 (DACOSH through DS2Y) - 458

 ***REFERENCES D. E. Amos, Quadrature subroutines for splines and
 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.
 ***ROUTINES CALLED D1MACH, DINTRV, DPPGQ8, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 459

DPLINT

 SUBROUTINE DPLINT (N, X, Y, C)
 ***BEGIN PROLOGUE DPLINT
 ***PURPOSE Produce the polynomial which interpolates a set of discrete
 data points.
 ***LIBRARY SLATEC
 ***CATEGORY E1B
 ***TYPE DOUBLE PRECISION (POLINT-S, DPLINT-D)
 ***KEYWORDS POLYNOMIAL INTERPOLATION
 ***AUTHOR Huddleston, R. E., (SNLL)
 ***DESCRIPTION

 Abstract
 Subroutine DPLINT is designed to produce the polynomial which
 interpolates the data (X(I),Y(I)), I=1,...,N. DPLINT sets up
 information in the array C which can be used by subroutine DPOLVL
 to evaluate the polynomial and its derivatives and by subroutine
 DPOLCF to produce the coefficients.

 Formal Parameters
 *** All TYPE REAL variables are DOUBLE PRECISION ***
 N - the number of data points (N .GE. 1)
 X - the array of abscissas (all of which must be distinct)
 Y - the array of ordinates
 C - an array of information used by subroutines
 ******* Dimensioning Information *******
 Arrays X,Y, and C must be dimensioned at least N in the calling
 program.

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 460

DPOCH

 DOUBLE PRECISION FUNCTION DPOCH (A, X)
 ***BEGIN PROLOGUE DPOCH
 ***PURPOSE Evaluate a generalization of Pochhammer's symbol.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C1, C7A
 ***TYPE DOUBLE PRECISION (POCH-S, DPOCH-D)
 ***KEYWORDS FNLIB, POCHHAMMER, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate a double precision generalization of Pochhammer's symbol
 (A)-sub-X = GAMMA(A+X)/GAMMA(A) for double precision A and X.
 For X a non-negative integer, POCH(A,X) is just Pochhammer's symbol.
 This is a preliminary version that does not handle wrong arguments
 properly and may not properly handle the case when the result is
 computed to less than half of double precision.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D9LGMC, DFAC, DGAMMA, DGAMR, DLGAMS, DLNREL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 461

DPOCH1

 DOUBLE PRECISION FUNCTION DPOCH1 (A, X)
 ***BEGIN PROLOGUE DPOCH1
 ***PURPOSE Calculate a generalization of Pochhammer's symbol starting
 from first order.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C1, C7A
 ***TYPE DOUBLE PRECISION (POCH1-S, DPOCH1-D)
 ***KEYWORDS FIRST ORDER, FNLIB, POCHHAMMER, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate a double precision generalization of Pochhammer's symbol
 for double precision A and X for special situations that require
 especially accurate values when X is small in
 POCH1(A,X) = (POCH(A,X)-1)/X
 = (GAMMA(A+X)/GAMMA(A) - 1.0)/X .
 This specification is particularly suited for stably computing
 expressions such as
 (GAMMA(A+X)/GAMMA(A) - GAMMA(B+X)/GAMMA(B))/X
 = POCH1(A,X) - POCH1(B,X)
 Note that POCH1(A,0.0) = PSI(A)

 When ABS(X) is so small that substantial cancellation will occur if
 the straightforward formula is used, we use an expansion due
 to Fields and discussed by Y. L. Luke, The Special Functions and Their
 Approximations, Vol. 1, Academic Press, 1969, page 34.

 The ratio POCH(A,X) = GAMMA(A+X)/GAMMA(A) is written by Luke as
 (A+(X-1)/2)**X * polynomial in (A+(X-1)/2)**(-2) .
 In order to maintain significance in POCH1, we write for positive a
 (A+(X-1)/2)**X = EXP(X*LOG(A+(X-1)/2)) = EXP(Q)
 = 1.0 + Q*EXPREL(Q) .
 Likewise the polynomial is written
 POLY = 1.0 + X*POLY1(A,X) .
 Thus,
 POCH1(A,X) = (POCH(A,X) - 1) / X
 = EXPREL(Q)*(Q/X + Q*POLY1(A,X)) + POLY1(A,X)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCOT, DEXPRL, DPOCH, DPSI, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 462

DPOCO

 SUBROUTINE DPOCO (A, LDA, N, RCOND, Z, INFO)
 ***BEGIN PROLOGUE DPOCO
 ***PURPOSE Factor a real symmetric positive definite matrix
 and estimate the condition of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE DOUBLE PRECISION (SPOCO-S, DPOCO-D, CPOCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPOCO factors a double precision symmetric positive definite
 matrix and estimates the condition of the matrix.

 If RCOND is not needed, DPOFA is slightly faster.
 To solve A*X = B , follow DPOCO by DPOSL.
 To compute INVERSE(A)*C , follow DPOCO by DPOSL.
 To compute DETERMINANT(A) , follow DPOCO by DPODI.
 To compute INVERSE(A) , follow DPOCO by DPODI.

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the symmetric matrix to be factored. Only the
 diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix R so that A = TRANS(R)*R
 where TRANS(R) is the transpose.
 The strict lower triangle is unaltered.
 If INFO .NE. 0 , the factorization is not complete.

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows. If INFO .NE. 0 , RCOND is unchanged.

 Z DOUBLE PRECISION(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that

SLATEC3 (DACOSH through DS2Y) - 463

 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DDOT, DPOFA, DSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 464

DPODI

 SUBROUTINE DPODI (A, LDA, N, DET, JOB)
 ***BEGIN PROLOGUE DPODI
 ***PURPOSE Compute the determinant and inverse of a certain real
 symmetric positive definite matrix using the factors
 computed by DPOCO, DPOFA or DQRDC.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B, D3B1B
 ***TYPE DOUBLE PRECISION (SPODI-S, DPODI-D, CPODI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPODI computes the determinant and inverse of a certain
 double precision symmetric positive definite matrix (see below)
 using the factors computed by DPOCO, DPOFA or DQRDC.

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the output A from DPOCO or DPOFA
 or the output X from DQRDC.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 A If DPOCO or DPOFA was used to factor A , then
 DPODI produces the upper half of INVERSE(A) .
 If DQRDC was used to decompose X , then
 DPODI produces the upper half of inverse(TRANS(X)*X)
 where TRANS(X) is the transpose.
 Elements of A below the diagonal are unchanged.
 If the units digit of JOB is zero, A is unchanged.

 DET DOUBLE PRECISION(2)
 determinant of A or of TRANS(X)*X if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly

SLATEC3 (DACOSH through DS2Y) - 465

 and if DPOCO or DPOFA has set INFO .EQ. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 466

DPOFA

 SUBROUTINE DPOFA (A, LDA, N, INFO)
 ***BEGIN PROLOGUE DPOFA
 ***PURPOSE Factor a real symmetric positive definite matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE DOUBLE PRECISION (SPOFA-S, DPOFA-D, CPOFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPOFA factors a double precision symmetric positive definite
 matrix.

 DPOFA is usually called by DPOCO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (time for DPOCO) = (1 + 18/N)*(time for DPOFA) .

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the symmetric matrix to be factored. Only the
 diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix R so that A = TRANS(R)*R
 where TRANS(R) is the transpose.
 The strict lower triangle is unaltered.
 If INFO .NE. 0 , the factorization is not complete.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 467

DPOFS

 SUBROUTINE DPOFS (A, LDA, N, V, ITASK, IND, WORK)
 ***BEGIN PROLOGUE DPOFS
 ***PURPOSE Solve a positive definite symmetric system of linear
 equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2B1B
 ***TYPE DOUBLE PRECISION (SPOFS-S, DPOFS-D, CPOFS-C)
 ***KEYWORDS HERMITIAN, LINEAR EQUATIONS, POSITIVE DEFINITE, SYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine DPOFS solves a positive definite symmetric
 NxN system of double precision linear equations using
 LINPACK subroutines DPOCO and DPOSL. That is, if A is an
 NxN double precision positive definite symmetric matrix and if
 X and B are double precision N-vectors, then DPOFS solves
 the equation

 A*X=B.

 The matrix A is first factored into upper and lower tri-
 angular matrices R and R-TRANPOSE. These factors are used to
 find the solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option only to solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, and N must not have been altered by the user following
 factorization (ITASK=1). IND will not be changed by DPOFS
 in this case.

 Argument Description ***

 A DOUBLE PRECISION(LDA,N)
 on entry, the doubly subscripted array with dimension
 (LDA,N) which contains the coefficient matrix. Only
 the upper triangle, including the diagonal, of the
 coefficient matrix need be entered and will subse-
 quently be referenced and changed by the routine.
 on return, A contains in its upper triangle an upper
 triangular matrix R such that A = (R-TRANPOSE) * R .
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater
 than or equal to 1. (terminal error message IND=-2)
 V DOUBLE PRECISION(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER

SLATEC3 (DACOSH through DS2Y) - 468

 If ITASK = 1, the matrix A is factored and then the
 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A.
 If ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT. 0 See error message corresponding to IND below.
 WORK DOUBLE PRECISION(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 Terminal N is greater than LDA.
 IND=-2 Terminal N is less than 1.
 IND=-3 Terminal ITASK is less than 1.
 IND=-4 Terminal The matrix A is computationally singular or
 is not positive definite. A solution
 has not been computed.
 IND=-10 Warning The solution has no apparent significance.
 The solution may be inaccurate or the
 matrix A may be poorly scaled.

 Note- The above Terminal(*fatal*) Error Messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED D1MACH, DPOCO, DPOSL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800514 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 469

DPOLCF

 SUBROUTINE DPOLCF (XX, N, X, C, D, WORK)
 ***BEGIN PROLOGUE DPOLCF
 ***PURPOSE Compute the coefficients of the polynomial fit (including
 Hermite polynomial fits) produced by a previous call to
 POLINT.
 ***LIBRARY SLATEC
 ***CATEGORY E1B
 ***TYPE DOUBLE PRECISION (POLCOF-S, DPOLCF-D)
 ***KEYWORDS COEFFICIENTS, POLYNOMIAL
 ***AUTHOR Huddleston, R. E., (SNLL)
 ***DESCRIPTION

 Abstract
 Subroutine DPOLCF computes the coefficients of the polynomial
 fit (including Hermite polynomial fits) produced by a previous
 call to DPLINT. The coefficients of the polynomial, expanded
 about XX, are stored in the array D. The expansion is of the form
 P(Z) = D(1) + D(2)*(Z-XX) +D(3)*((Z-XX)**2) + ... +
 D(N)*((Z-XX)**(N-1)).
 Between the call to DPLINT and the call to DPOLCF the variable N
 and the arrays X and C must not be altered.

 ***** INPUT PARAMETERS
 *** All TYPE REAL variables are DOUBLE PRECISION ***

 XX - The point about which the Taylor expansion is to be made.

 N - ****
 * N, X, and C must remain unchanged between the
 X - * call to DPLINT and the call to DPOLCF.
 C - ****

 ***** OUTPUT PARAMETER
 *** All TYPE REAL variables are DOUBLE PRECISION ***

 D - The array of coefficients for the Taylor expansion as
 explained in the abstract

 ***** STORAGE PARAMETER

 WORK - This is an array to provide internal working storage. It
 must be dimensioned by at least 2*N in the calling program.

 **** Note - There are two methods for evaluating the fit produced
 by DPLINT. You may call DPOLVL to perform the task, or you may
 call DPOLCF to obtain the coefficients of the Taylor expansion and
 then write your own evaluation scheme. Due to the inherent errors
 in the computations of the Taylor expansion from the Newton
 coefficients produced by DPLINT, much more accuracy may be
 expected by calling DPOLVL as opposed to writing your own scheme.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 890213 DATE WRITTEN

SLATEC3 (DACOSH through DS2Y) - 470

 891006 Cosmetic changes to prologue. (WRB)
 891024 Corrected KEYWORD section. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 471

DPOLFT

 SUBROUTINE DPOLFT (N, X, Y, W, MAXDEG, NDEG, EPS, R, IERR, A)
 ***BEGIN PROLOGUE DPOLFT
 ***PURPOSE Fit discrete data in a least squares sense by polynomials
 in one variable.
 ***LIBRARY SLATEC
 ***CATEGORY K1A1A2
 ***TYPE DOUBLE PRECISION (POLFIT-S, DPOLFT-D)
 ***KEYWORDS CURVE FITTING, DATA FITTING, LEAST SQUARES, POLYNOMIAL FIT
 ***AUTHOR Shampine, L. F., (SNLA)
 Davenport, S. M., (SNLA)
 Huddleston, R. E., (SNLL)
 ***DESCRIPTION

 Abstract

 Given a collection of points X(I) and a set of values Y(I) which
 correspond to some function or measurement at each of the X(I),
 subroutine DPOLFT computes the weighted least-squares polynomial
 fits of all degrees up to some degree either specified by the user
 or determined by the routine. The fits thus obtained are in
 orthogonal polynomial form. Subroutine DP1VLU may then be
 called to evaluate the fitted polynomials and any of their
 derivatives at any point. The subroutine DPCOEF may be used to
 express the polynomial fits as powers of (X-C) for any specified
 point C.

 The parameters for DPOLFT are

 Input -- All TYPE REAL variables are DOUBLE PRECISION
 N - the number of data points. The arrays X, Y and W
 must be dimensioned at least N (N .GE. 1).
 X - array of values of the independent variable. These
 values may appear in any order and need not all be
 distinct.
 Y - array of corresponding function values.
 W - array of positive values to be used as weights. If
 W(1) is negative, DPOLFT will set all the weights
 to 1.0, which means unweighted least squares error
 will be minimized. To minimize relative error, the
 user should set the weights to: W(I) = 1.0/Y(I)**2,
 I = 1,...,N .
 MAXDEG - maximum degree to be allowed for polynomial fit.
 MAXDEG may be any non-negative integer less than N.
 Note -- MAXDEG cannot be equal to N-1 when a
 statistical test is to be used for degree selection,
 i.e., when input value of EPS is negative.
 EPS - specifies the criterion to be used in determining
 the degree of fit to be computed.
 (1) If EPS is input negative, DPOLFT chooses the
 degree based on a statistical F test of
 significance. One of three possible
 significance levels will be used: .01, .05 or
 .10. If EPS=-1.0 , the routine will
 automatically select one of these levels based
 on the number of data points and the maximum
 degree to be considered. If EPS is input as

SLATEC3 (DACOSH through DS2Y) - 472

 -.01, -.05, or -.10, a significance level of
 .01, .05, or .10, respectively, will be used.
 (2) If EPS is set to 0., DPOLFT computes the
 polynomials of degrees 0 through MAXDEG .
 (3) If EPS is input positive, EPS is the RMS
 error tolerance which must be satisfied by the
 fitted polynomial. DPOLFT will increase the
 degree of fit until this criterion is met or
 until the maximum degree is reached.

 Output -- All TYPE REAL variables are DOUBLE PRECISION
 NDEG - degree of the highest degree fit computed.
 EPS - RMS error of the polynomial of degree NDEG .
 R - vector of dimension at least NDEG containing values
 of the fit of degree NDEG at each of the X(I) .
 Except when the statistical test is used, these
 values are more accurate than results from subroutine
 DP1VLU normally are.
 IERR - error flag with the following possible values.
 1 -- indicates normal execution, i.e., either
 (1) the input value of EPS was negative, and the
 computed polynomial fit of degree NDEG
 satisfies the specified F test, or
 (2) the input value of EPS was 0., and the fits of
 all degrees up to MAXDEG are complete, or
 (3) the input value of EPS was positive, and the
 polynomial of degree NDEG satisfies the RMS
 error requirement.
 2 -- invalid input parameter. At least one of the input
 parameters has an illegal value and must be corrected
 before DPOLFT can proceed. Valid input results
 when the following restrictions are observed
 N .GE. 1
 0 .LE. MAXDEG .LE. N-1 for EPS .GE. 0.
 0 .LE. MAXDEG .LE. N-2 for EPS .LT. 0.
 W(1)=-1.0 or W(I) .GT. 0., I=1,...,N .
 3 -- cannot satisfy the RMS error requirement with a
 polynomial of degree no greater than MAXDEG . Best
 fit found is of degree MAXDEG .
 4 -- cannot satisfy the test for significance using
 current value of MAXDEG . Statistically, the
 best fit found is of order NORD . (In this case,
 NDEG will have one of the values: MAXDEG-2,
 MAXDEG-1, or MAXDEG). Using a higher value of
 MAXDEG may result in passing the test.
 A - work and output array having at least 3N+3MAXDEG+3
 locations

 Note - DPOLFT calculates all fits of degrees up to and including
 NDEG . Any or all of these fits can be evaluated or
 expressed as powers of (X-C) using DP1VLU and DPCOEF
 after just one call to DPOLFT .

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED DP1VLU, XERMSG
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)

SLATEC3 (DACOSH through DS2Y) - 473

 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900911 Added variable YP to DOUBLE PRECISION declaration. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 920527 Corrected erroneous statements in DESCRIPTION. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 474

DPOLVL

 SUBROUTINE DPOLVL (NDER, XX, YFIT, YP, N, X, C, WORK, IERR)
 ***BEGIN PROLOGUE DPOLVL
 ***PURPOSE Calculate the value of a polynomial and its first NDER
 derivatives where the polynomial was produced by a previous
 call to DPLINT.
 ***LIBRARY SLATEC
 ***CATEGORY E3
 ***TYPE DOUBLE PRECISION (POLYVL-S, DPOLVL-D)
 ***KEYWORDS POLYNOMIAL EVALUATION
 ***AUTHOR Huddleston, R. E., (SNLL)
 ***DESCRIPTION

 Abstract -
 Subroutine DPOLVL calculates the value of the polynomial and
 its first NDER derivatives where the polynomial was produced by
 a previous call to DPLINT.
 The variable N and the arrays X and C must not be altered
 between the call to DPLINT and the call to DPOLVL.

 ****** Dimensioning Information *******

 YP must be dimensioned by at least NDER
 X must be dimensioned by at least N (see the abstract)
 C must be dimensioned by at least N (see the abstract)
 WORK must be dimensioned by at least 2*N if NDER is .GT. 0.

 *** Note ***
 If NDER=0, neither YP nor WORK need to be dimensioned variables.
 If NDER=1, YP does not need to be a dimensioned variable.

 ***** Input parameters
 *** All TYPE REAL variables are DOUBLE PRECISION ***

 NDER - the number of derivatives to be evaluated

 XX - the argument at which the polynomial and its derivatives
 are to be evaluated.

 N - *****
 * N, X, and C must not be altered between the call
 X - * to DPLINT and the call to DPOLVL.
 C - *****

 ***** Output Parameters
 *** All TYPE REAL variables are DOUBLE PRECISION ***

 YFIT - the value of the polynomial at XX

 YP - the derivatives of the polynomial at XX. The derivative of
 order J at XX is stored in YP(J) , J = 1,...,NDER.

 IERR - Output error flag with the following possible values.
 = 1 indicates normal execution

SLATEC3 (DACOSH through DS2Y) - 475

 ***** Storage Parameters

 WORK = this is an array to provide internal working storage for
 DPOLVL. It must be dimensioned by at least 2*N if NDER is
 .GT. 0. If NDER=0, WORK does not need to be a dimensioned
 variable.

 ***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
 Curve fitting by polynomials in one variable, Report
 SLA-74-0270, Sandia Laboratories, June 1974.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 740601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 476

DPOSL

 SUBROUTINE DPOSL (A, LDA, N, B)
 ***BEGIN PROLOGUE DPOSL
 ***PURPOSE Solve the real symmetric positive definite linear system
 using the factors computed by DPOCO or DPOFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE DOUBLE PRECISION (SPOSL-S, DPOSL-D, CPOSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPOSL solves the double precision symmetric positive definite
 system A * X = B
 using the factors computed by DPOCO or DPOFA.

 On Entry

 A DOUBLE PRECISION(LDA, N)
 the output from DPOCO or DPOFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 B DOUBLE PRECISION(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically this indicates
 singularity, but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL DPOCO(A,LDA,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL DPOSL(A,LDA,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2

SLATEC3 (DACOSH through DS2Y) - 477

 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 478

DPPCO

 SUBROUTINE DPPCO (AP, N, RCOND, Z, INFO)
 ***BEGIN PROLOGUE DPPCO
 ***PURPOSE Factor a symmetric positive definite matrix stored in
 packed form and estimate the condition number of the
 matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE DOUBLE PRECISION (SPPCO-S, DPPCO-D, CPPCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPPCO factors a double precision symmetric positive definite
 matrix stored in packed form
 and estimates the condition of the matrix.

 If RCOND is not needed, DPPFA is slightly faster.
 To solve A*X = B , follow DPPCO by DPPSL.
 To compute INVERSE(A)*C , follow DPPCO by DPPSL.
 To compute DETERMINANT(A) , follow DPPCO by DPPDI.
 To compute INVERSE(A) , follow DPPCO by DPPDI.

 On Entry

 AP DOUBLE PRECISION (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 On Return

 AP an upper triangular matrix R , stored in packed
 form, so that A = TRANS(R)*R .
 If INFO .NE. 0 , the factorization is not complete.

 RCOND DOUBLE PRECISION
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows. If INFO .NE. 0 , RCOND is unchanged.

 Z DOUBLE PRECISION(N)
 a work vector whose contents are usually unimportant.
 If A is singular to working precision, then Z is
 an approximate null vector in the sense that

SLATEC3 (DACOSH through DS2Y) - 479

 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DASUM, DAXPY, DDOT, DPPFA, DSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 480

DPPDI

 SUBROUTINE DPPDI (AP, N, DET, JOB)
 ***BEGIN PROLOGUE DPPDI
 ***PURPOSE Compute the determinant and inverse of a real symmetric
 positive definite matrix using factors from DPPCO or DPPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B, D3B1B
 ***TYPE DOUBLE PRECISION (SPPDI-S, DPPDI-D, CPPDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 PACKED, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPPDI computes the determinant and inverse
 of a double precision symmetric positive definite matrix
 using the factors computed by DPPCO or DPPFA .

 On Entry

 AP DOUBLE PRECISION (N*(N+1)/2)
 the output from DPPCO or DPPFA.

 N INTEGER
 the order of the matrix A .

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 AP the upper triangular half of the inverse .
 The strict lower triangle is unaltered.

 DET DOUBLE PRECISION(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 DETERMINANT = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly
 and if DPOCO or DPOFA has set INFO .EQ. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC3 (DACOSH through DS2Y) - 481

 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 482

DPPERM

 SUBROUTINE DPPERM (DX, N, IPERM, IER)
 ***BEGIN PROLOGUE DPPERM
 ***PURPOSE Rearrange a given array according to a prescribed
 permutation vector.
 ***LIBRARY SLATEC
 ***CATEGORY N8
 ***TYPE DOUBLE PRECISION (SPPERM-S, DPPERM-D, IPPERM-I, HPPERM-H)
 ***KEYWORDS PERMUTATION, REARRANGEMENT
 ***AUTHOR McClain, M. A., (NIST)
 Rhoads, G. S., (NBS)
 ***DESCRIPTION

 DPPERM rearranges the data vector DX according to the
 permutation IPERM: DX(I) <--- DX(IPERM(I)). IPERM could come
 from one of the sorting routines IPSORT, SPSORT, DPSORT or
 HPSORT.

 Description of Parameters
 DX - input/output -- double precision array of values to be
 rearranged.
 N - input -- number of values in double precision array DX.
 IPERM - input -- permutation vector.
 IER - output -- error indicator:
 = 0 if no error,
 = 1 if N is zero or negative,
 = 2 if IPERM is not a valid permutation.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 901004 DATE WRITTEN
 920507 Modified by M. McClain to revise prologue text.
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 483

DPPFA

 SUBROUTINE DPPFA (AP, N, INFO)
 ***BEGIN PROLOGUE DPPFA
 ***PURPOSE Factor a real symmetric positive definite matrix stored in
 packed form.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE DOUBLE PRECISION (SPPFA-S, DPPFA-D, CPPFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, PACKED,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPPFA factors a double precision symmetric positive definite
 matrix stored in packed form.

 DPPFA is usually called by DPPCO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (time for DPPCO) = (1 + 18/N)*(time for DPPFA) .

 On Entry

 AP DOUBLE PRECISION (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 On Return

 AP an upper triangular matrix R , stored in packed
 form, so that A = TRANS(R)*R .

 INFO INTEGER
 = 0 for normal return.
 = K if the leading minor of order K is not
 positive definite.

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.

SLATEC3 (DACOSH through DS2Y) - 484

 ***ROUTINES CALLED DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 485

DPPQAD

 SUBROUTINE DPPQAD (LDC, C, XI, LXI, K, X1, X2, PQUAD)
 ***BEGIN PROLOGUE DPPQAD
 ***PURPOSE Compute the integral on (X1,X2) of a K-th order B-spline
 using the piecewise polynomial (PP) representation.
 ***LIBRARY SLATEC
 ***CATEGORY H2A2A1, E3, K6
 ***TYPE DOUBLE PRECISION (PPQAD-S, DPPQAD-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, QUADRATURE, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract **** a double precision routine ****
 DPPQAD computes the integral on (X1,X2) of a K-th order
 B-spline using the piecewise polynomial representation
 (C,XI,LXI,K). Here the Taylor expansion about the left
 end point XI(J) of the J-th interval is integrated and
 evaluated on subintervals of (X1,X2) which are formed by
 included break points. Integration outside (XI(1),XI(LXI+1))
 is permitted.

 Description of Arguments
 Input C,XI,X1,X2 are double precision
 LDC - leading dimension of matrix C, LDC .GE. K
 C(I,J) - right Taylor derivatives at XI(J), I=1,K , J=1,LXI
 XI(*) - break point array of length LXI+1
 LXI - number of polynomial pieces
 K - order of B-spline, K .GE. 1
 X1,X2 - end points of quadrature interval, normally in
 XI(1) .LE. X .LE. XI(LXI+1)

 Output PQUAD is double precision
 PQUAD - integral of the PP representation over (X1,X2)

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES D. E. Amos, Quadrature subroutines for splines and
 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.
 ***ROUTINES CALLED DINTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 486

DPPSL

 SUBROUTINE DPPSL (AP, N, B)
 ***BEGIN PROLOGUE DPPSL
 ***PURPOSE Solve the real symmetric positive definite system using
 the factors computed by DPPCO or DPPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE DOUBLE PRECISION (SPPSL-S, DPPSL-D, CPPSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED,
 POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 DPPSL solves the double precision symmetric positive definite
 system A * X = B
 using the factors computed by DPPCO or DPPFA.

 On Entry

 AP DOUBLE PRECISION (N*(N+1)/2)
 the output from DPPCO or DPPFA.

 N INTEGER
 the order of the matrix A .

 B DOUBLE PRECISION(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically this indicates
 singularity, but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL DPPCO(AP,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL DPPSL(AP,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.

SLATEC3 (DACOSH through DS2Y) - 487

 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 488

DPPVAL

 DOUBLE PRECISION FUNCTION DPPVAL (LDC, C, XI, LXI, K, IDERIV, X,
 + INPPV)
 ***BEGIN PROLOGUE DPPVAL
 ***PURPOSE Calculate the value of the IDERIV-th derivative of the
 B-spline from the PP-representation.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE DOUBLE PRECISION (PPVAL-S, DPPVAL-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract **** a double precision routine ****
 DPPVAL is the PPVALU function of the reference.

 DPPVAL calculates (at X) the value of the IDERIV-th
 derivative of the B-spline from the PP-representation
 (C,XI,LXI,K). The Taylor expansion about XI(J) for X in
 the interval XI(J) .LE. X .LT. XI(J+1) is evaluated, J=1,LXI.
 Right limiting values at X=XI(J) are obtained. DPPVAL will
 extrapolate beyond XI(1) and XI(LXI+1).

 To obtain left limiting values (left derivatives) at XI(J)
 replace LXI by J-1 and set X=XI(J),J=2,LXI+1.

 Description of Arguments

 Input C,XI,X are double precision
 LDC - leading dimension of C matrix, LDC .GE. K
 C - matrix of dimension at least (K,LXI) containing
 right derivatives at break points XI(*).
 XI - break point vector of length LXI+1
 LXI - number of polynomial pieces
 K - order of B-spline, K .GE. 1
 IDERIV - order of the derivative, 0 .LE. IDERIV .LE. K-1
 IDERIV=0 gives the B-spline value
 X - argument, XI(1) .LE. X .LE. XI(LXI+1)
 INPPV - an initialization parameter which must be set
 to 1 the first time DPPVAL is called.

 Output DPPVAL is double precision
 INPPV - INPPV contains information for efficient process-
 ing after the initial call and INPPV must not
 be changed by the user. Distinct splines require
 distinct INPPV parameters.
 DPPVAL - value of the IDERIV-th derivative at X

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED DINTRV, XERMSG

SLATEC3 (DACOSH through DS2Y) - 489

 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 490

DPSI

 DOUBLE PRECISION FUNCTION DPSI (X)
 ***BEGIN PROLOGUE DPSI
 ***PURPOSE Compute the Psi (or Digamma) function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7C
 ***TYPE DOUBLE PRECISION (PSI-S, DPSI-D, CPSI-C)
 ***KEYWORDS DIGAMMA FUNCTION, FNLIB, PSI FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 DPSI calculates the double precision Psi (or Digamma) function for
 double precision argument X. PSI(X) is the logarithmic derivative
 of the Gamma function of X.

 Series for PSI on the interval 0. to 1.00000E+00
 with weighted error 5.79E-32
 log weighted error 31.24
 significant figures required 30.93
 decimal places required 32.05

 Series for APSI on the interval 0. to 1.00000E-02
 with weighted error 7.75E-33
 log weighted error 32.11
 significant figures required 28.88
 decimal places required 32.71

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DCOT, DCSEVL, INITDS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 920618 Removed space from variable name. (RWC, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 491

DPSIFN

 SUBROUTINE DPSIFN (X, N, KODE, M, ANS, NZ, IERR)
 ***BEGIN PROLOGUE DPSIFN
 ***PURPOSE Compute derivatives of the Psi function.
 ***LIBRARY SLATEC
 ***CATEGORY C7C
 ***TYPE DOUBLE PRECISION (PSIFN-S, DPSIFN-D)
 ***KEYWORDS DERIVATIVES OF THE GAMMA FUNCTION, POLYGAMMA FUNCTION,
 PSI FUNCTION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 The following definitions are used in DPSIFN:

 Definition 1
 PSI(X) = d/dx (ln(GAMMA(X)), the first derivative of
 the log GAMMA function.
 Definition 2
 K K
 PSI(K,X) = d /dx (PSI(X)), the K-th derivative of PSI(X).

 DPSIFN computes a sequence of SCALED derivatives of
 the PSI function; i.e. for fixed X and M it computes
 the M-member sequence

 ((-1)**(K+1)/GAMMA(K+1))*PSI(K,X)
 for K = N,...,N+M-1

 where PSI(K,X) is as defined above. For KODE=1, DPSIFN returns
 the scaled derivatives as described. KODE=2 is operative only
 when K=0 and in that case DPSIFN returns -PSI(X) + LN(X). That
 is, the logarithmic behavior for large X is removed when KODE=2
 and K=0. When sums or differences of PSI functions are computed
 the logarithmic terms can be combined analytically and computed
 separately to help retain significant digits.

 Note that CALL DPSIFN(X,0,1,1,ANS) results in
 ANS = -PSI(X)

 Input X is DOUBLE PRECISION
 X - Argument, X .gt. 0.0D0
 N - First member of the sequence, 0 .le. N .le. 100
 N=0 gives ANS(1) = -PSI(X) for KODE=1
 -PSI(X)+LN(X) for KODE=2
 KODE - Selection parameter
 KODE=1 returns scaled derivatives of the PSI
 function.
 KODE=2 returns scaled derivatives of the PSI
 function EXCEPT when N=0. In this case,
 ANS(1) = -PSI(X) + LN(X) is returned.
 M - Number of members of the sequence, M.ge.1

 Output ANS is DOUBLE PRECISION
 ANS - A vector of length at least M whose first M
 components contain the sequence of derivatives
 scaled according to KODE.
 NZ - Underflow flag

SLATEC3 (DACOSH through DS2Y) - 492

 NZ.eq.0, A normal return
 NZ.ne.0, Underflow, last NZ components of ANS are
 set to zero, ANS(M-K+1)=0.0, K=1,...,NZ
 IERR - Error flag
 IERR=0, A normal return, computation completed
 IERR=1, Input error, no computation
 IERR=2, Overflow, X too small or N+M-1 too
 large or both
 IERR=3, Error, N too large. Dimensioned
 array TRMR(NMAX) is not large enough for N

 The nominal computational accuracy is the maximum of unit
 roundoff (=D1MACH(4)) and 1.0D-18 since critical constants
 are given to only 18 digits.

 PSIFN is the single precision version of DPSIFN.

 *Long Description:

 The basic method of evaluation is the asymptotic expansion
 for large X.ge.XMIN followed by backward recursion on a two
 term recursion relation

 W(X+1) + X**(-N-1) = W(X).

 This is supplemented by a series

 SUM((X+K)**(-N-1) , K=0,1,2,...)

 which converges rapidly for large N. Both XMIN and the
 number of terms of the series are calculated from the unit
 roundoff of the machine environment.

 ***REFERENCES Handbook of Mathematical Functions, National Bureau
 of Standards Applied Mathematics Series 55, edited
 by M. Abramowitz and I. A. Stegun, equations 6.3.5,
 6.3.18, 6.4.6, 6.4.9 and 6.4.10, pp.258-260, 1964.
 D. E. Amos, A portable Fortran subroutine for
 derivatives of the Psi function, Algorithm 610, ACM
 Transactions on Mathematical Software 9, 4 (1983),
 pp. 494-502.
 ***ROUTINES CALLED D1MACH, I1MACH
 ***REVISION HISTORY (YYMMDD)
 820601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 493

DPSORT

 SUBROUTINE DPSORT (DX, N, IPERM, KFLAG, IER)
 ***BEGIN PROLOGUE DPSORT
 ***PURPOSE Return the permutation vector generated by sorting a given
 array and, optionally, rearrange the elements of the array.
 The array may be sorted in increasing or decreasing order.
 A slightly modified quicksort algorithm is used.
 ***LIBRARY SLATEC
 ***CATEGORY N6A1B, N6A2B
 ***TYPE DOUBLE PRECISION (SPSORT-S, DPSORT-D, IPSORT-I, HPSORT-H)
 ***KEYWORDS NUMBER SORTING, PASSIVE SORTING, SINGLETON QUICKSORT, SORT
 ***AUTHOR Jones, R. E., (SNLA)
 Rhoads, G. S., (NBS)
 Wisniewski, J. A., (SNLA)
 ***DESCRIPTION

 DPSORT returns the permutation vector IPERM generated by sorting
 the array DX and, optionally, rearranges the values in DX. DX may
 be sorted in increasing or decreasing order. A slightly modified
 quicksort algorithm is used.

 IPERM is such that DX(IPERM(I)) is the Ith value in the
 rearrangement of DX. IPERM may be applied to another array by
 calling IPPERM, SPPERM, DPPERM or HPPERM.

 The main difference between DPSORT and its active sorting equivalent
 DSORT is that the data are referenced indirectly rather than
 directly. Therefore, DPSORT should require approximately twice as
 long to execute as DSORT. However, DPSORT is more general.

 Description of Parameters
 DX - input/output -- double precision array of values to be
 sorted. If ABS(KFLAG) = 2, then the values in DX will be
 rearranged on output; otherwise, they are unchanged.
 N - input -- number of values in array DX to be sorted.
 IPERM - output -- permutation array such that IPERM(I) is the
 index of the value in the original order of the
 DX array that is in the Ith location in the sorted
 order.
 KFLAG - input -- control parameter:
 = 2 means return the permutation vector resulting from
 sorting DX in increasing order and sort DX also.
 = 1 means return the permutation vector resulting from
 sorting DX in increasing order and do not sort DX.
 = -1 means return the permutation vector resulting from
 sorting DX in decreasing order and do not sort DX.
 = -2 means return the permutation vector resulting from
 sorting DX in decreasing order and sort DX also.
 IER - output -- error indicator:
 = 0 if no error,
 = 1 if N is zero or negative,
 = 2 if KFLAG is not 2, 1, -1, or -2.
 ***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
 for sorting with minimal storage, Communications of
 the ACM, 12, 3 (1969), pp. 185-187.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)

SLATEC3 (DACOSH through DS2Y) - 494

 761101 DATE WRITTEN
 761118 Modified by John A. Wisniewski to use the Singleton
 quicksort algorithm.
 870423 Modified by Gregory S. Rhoads for passive sorting with the
 option for the rearrangement of the original data.
 890619 Double precision version of SPSORT created by D. W. Lozier.
 890620 Algorithm for rearranging the data vector corrected by R.
 Boisvert.
 890622 Prologue upgraded to Version 4.0 style by D. Lozier.
 891128 Error when KFLAG.LT.0 and N=1 corrected by R. Boisvert.
 920507 Modified by M. McClain to revise prologue text.
 920818 Declarations section rebuilt and code restructured to use
 IF-THEN-ELSE-ENDIF. (SMR, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 495

DPTSL

 SUBROUTINE DPTSL (N, D, E, B)
 ***BEGIN PROLOGUE DPTSL
 ***PURPOSE Solve a positive definite tridiagonal linear system.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B2A
 ***TYPE DOUBLE PRECISION (SPTSL-S, DPTSL-D, CPTSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE,
 TRIDIAGONAL
 ***AUTHOR Dongarra, J., (ANL)
 ***DESCRIPTION

 DPTSL, given a positive definite symmetric tridiagonal matrix and
 a right hand side, will find the solution.

 On Entry

 N INTEGER
 is the order of the tridiagonal matrix.

 D DOUBLE PRECISION(N)
 is the diagonal of the tridiagonal matrix.
 On output D is destroyed.

 E DOUBLE PRECISION(N)
 is the offdiagonal of the tridiagonal matrix.
 E(1) through E(N-1) should contain the
 offdiagonal.

 B DOUBLE PRECISION(N)
 is the right hand side vector.

 On Return

 B contains the solution.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890505 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 496

DQAG

 SUBROUTINE DQAG (F, A, B, EPSABS, EPSREL, KEY, RESULT, ABSERR,
 + NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE DQAG
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT)LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE DOUBLE PRECISION (QAG-S, DQAG-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD RULES,
 GENERAL-PURPOSE, GLOBALLY ADAPTIVE, INTEGRAND EXAMINATOR,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Double precision version

 F - Double precision
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to be
 Declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 The routine will end with IER = 6.

 KEY - Integer
 Key for choice of local integration rule
 A GAUSS-KRONROD PAIR is used with
 7 - 15 POINTS If KEY.LT.2,
 10 - 21 POINTS If KEY = 2,
 15 - 31 POINTS If KEY = 3,
 20 - 41 POINTS If KEY = 4,
 25 - 51 POINTS If KEY = 5,
 30 - 61 POINTS If KEY.GT.5.

 ON RETURN
 RESULT - Double precision

SLATEC3 (DACOSH through DS2Y) - 497

 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 Which should EQUAL or EXCEED ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 The estimates for RESULT and ERROR are
 Less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). HOWEVER, If
 this yield no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties.
 If the position of a local difficulty can
 be determined (I.E. SINGULARITY,
 DISCONTINUITY WITHIN THE INTERVAL) One
 will probably gain from splitting up the
 interval at this point and calling the
 INTEGRATOR on the SUBRANGES. If possible,
 AN APPROPRIATE SPECIAL-PURPOSE INTEGRATOR
 should be used which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 6 The input is invalid, because
 (EPSABS.LE.0 AND
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 OR LIMIT.LT.1 OR LENW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set
 to zero.
 EXCEPT when LENW is invalid, IWORK(1),
 WORK(LIMIT*2+1) and WORK(LIMIT*3+1) are
 set to zero, WORK(1) is set to A and
 WORK(LIMIT+1) to B.

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 Limit determines the maximum number of subintervals
 in the partition of the given integration interval
 (A,B), LIMIT.GE.1.
 If LIMIT.LT.1, the routine will end with IER = 6.

SLATEC3 (DACOSH through DS2Y) - 498

 LENW - Integer
 Dimensioning parameter for work
 LENW must be at least LIMIT*4.
 IF LENW.LT.LIMIT*4, the routine will end with
 IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least limit, the first K
 elements of which contain pointers to the error
 estimates over the subintervals, such that
 WORK(LIMIT*3+IWORK(1)),... , WORK(LIMIT*3+IWORK(K))
 form a decreasing sequence with K = LAST If
 LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST otherwise

 WORK - Double precision
 Vector of dimension at least LENW
 on return
 WORK(1), ..., WORK(LAST) contain the left end
 points of the subintervals in the partition of
 (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain the
 right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST) contain
 the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQAGE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 499

DQAGE

 SUBROUTINE DQAGE (F, A, B, EPSABS, EPSREL, KEY, LIMIT, RESULT,
 + ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE DQAGE
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 ABS(I-RESLT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE DOUBLE PRECISION (QAGE-S, DQAGE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD RULES,
 GENERAL-PURPOSE, GLOBALLY ADAPTIVE, INTEGRAND EXAMINATOR,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 KEY - Integer
 Key for choice of local integration rule
 A Gauss-Kronrod pair is used with
 7 - 15 points if KEY.LT.2,
 10 - 21 points if KEY = 2,
 15 - 31 points if KEY = 3,
 20 - 41 points if KEY = 4,
 25 - 51 points if KEY = 5,
 30 - 61 points if KEY.GT.5.

SLATEC3 (DACOSH through DS2Y) - 500

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.1.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 The estimates for result and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value
 of LIMIT.
 However, if this yields no improvement it
 is rather advised to analyze the integrand
 in order to determine the integration
 difficulties. If the position of a local
 difficulty can be determined(e.g.
 SINGULARITY, DISCONTINUITY within the
 interval) one will probably gain from
 splitting up the interval at this point
 and calling the integrator on the
 subranges. If possible, an appropriate
 special-purpose integrator should be used
 which is designed for handling the type of
 difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 6 The input is invalid, because
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 RESULT, ABSERR, NEVAL, LAST, RLIST(1) ,
 ELIST(1) and IORD(1) are set to zero.
 ALIST(1) and BLIST(1) are set to A and B
 respectively.

 ALIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the given integration range (A,B)

SLATEC3 (DACOSH through DS2Y) - 501

 BLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the given integration range (A,B)

 RLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the
 integral approximations on the subintervals

 ELIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the
 error estimates over the subintervals,
 such that ELIST(IORD(1)), ...,
 ELIST(IORD(K)) form a decreasing sequence,
 with K = LAST if LAST.LE.(LIMIT/2+2), and
 K = LIMIT+1-LAST otherwise

 LAST - Integer
 Number of subintervals actually produced in the
 subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DQK15, DQK21, DQK31, DQK41, DQK51, DQK61,
 DQPSRT
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 502

DQAGI

 SUBROUTINE DQAGI (F, BOUND, INF, EPSABS, EPSREL, RESULT, ABSERR,
 + NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE DQAGI
 ***PURPOSE The routine calculates an approximation result to a given
 INTEGRAL I = Integral of F over (BOUND,+INFINITY)
 OR I = Integral of F over (-INFINITY,BOUND)
 OR I = Integral of F over (-INFINITY,+INFINITY)
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A1, H2A4A1
 ***TYPE DOUBLE PRECISION (QAGI-S, DQAGI-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
 GLOBALLY ADAPTIVE, INFINITE INTERVALS, QUADPACK,
 QUADRATURE, TRANSFORMATION
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration over infinite intervals
 Standard fortran subroutine

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 BOUND - Double precision
 Finite bound of integration range
 (has no meaning if interval is doubly-infinite)

 INF - Integer
 indicating the kind of integration range involved
 INF = 1 corresponds to (BOUND,+INFINITY),
 INF = -1 to (-INFINITY,BOUND),
 INF = 2 to (-INFINITY,+INFINITY).

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

SLATEC3 (DACOSH through DS2Y) - 503

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 - IER.GT.0 abnormal termination of the routine. The
 estimates for result and error are less
 reliable. It is assumed that the requested
 accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table.
 It is assumed that the requested tolerance
 cannot be achieved, and that the returned
 RESULT is the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or LIMIT.LT.1 or LENIW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LIMIT or LENIW is
 invalid, IWORK(1), WORK(LIMIT*2+1) and
 WORK(LIMIT*3+1) are set to ZERO, WORK(1)
 is set to A and WORK(LIMIT+1) to B.

SLATEC3 (DACOSH through DS2Y) - 504

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 LIMIT determines the maximum number of subintervals
 in the partition of the given integration interval
 (A,B), LIMIT.GE.1.
 If LIMIT.LT.1, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LIMIT*4.
 If LENW.LT.LIMIT*4, the routine will end
 with IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LIMIT, the first
 K elements of which contain pointers
 to the error estimates over the subintervals,
 such that WORK(LIMIT*3+IWORK(1)),... ,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with K = LAST if LAST.LE.(LIMIT/2+2), and
 K = LIMIT+1-LAST otherwise

 WORK - Double precision
 Vector of dimension at least LENW
 on return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the
 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) Contain
 the right end points,
 WORK(LIMIT*2+1), ...,WORK(LIMIT*2+LAST) contain the
 integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3)
 contain the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQAGIE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 505

DQAGIE

 SUBROUTINE DQAGIE (F, BOUND, INF, EPSABS, EPSREL, LIMIT, RESULT,
 + ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE DQAGIE
 ***PURPOSE The routine calculates an approximation result to a given
 integral I = Integral of F over (BOUND,+INFINITY)
 or I = Integral of F over (-INFINITY,BOUND)
 or I = Integral of F over (-INFINITY,+INFINITY),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A1, H2A4A1
 ***TYPE DOUBLE PRECISION (QAGIE-S, DQAGIE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
 GLOBALLY ADAPTIVE, INFINITE INTERVALS, QUADPACK,
 QUADRATURE, TRANSFORMATION
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration over infinite intervals
 Standard fortran subroutine

 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 BOUND - Double precision
 Finite bound of integration range
 (has no meaning if interval is doubly-infinite)

 INF - Double precision
 Indicating the kind of integration range involved
 INF = 1 corresponds to (BOUND,+INFINITY),
 INF = -1 to (-INFINITY,BOUND),
 INF = 2 to (-INFINITY,+INFINITY).

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.1

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

SLATEC3 (DACOSH through DS2Y) - 506

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 - IER.GT.0 Abnormal termination of the routine. The
 estimates for result and error are less
 reliable. It is assumed that the requested
 accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties.
 If the position of a local difficulty can
 be determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table.
 It is assumed that the requested tolerance
 cannot be achieved, and that the returned
 result is the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 RESULT, ABSERR, NEVAL, LAST, RLIST(1),
 ELIST(1) and IORD(1) are set to zero.
 ALIST(1) and BLIST(1) are set to 0
 and 1 respectively.

 ALIST - Double precision

SLATEC3 (DACOSH through DS2Y) - 507

 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the transformed integration range (0,1).

 BLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the transformed integration range (0,1).

 RLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension LIMIT, the first K
 elements of which are pointers to the
 error estimates over the subintervals,
 such that ELIST(IORD(1)), ..., ELIST(IORD(K))
 form a decreasing sequence, with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise

 LAST - Integer
 Number of subintervals actually produced
 in the subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DQELG, DQK15I, DQPSRT
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 508

DQAGP

 SUBROUTINE DQAGP (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, RESULT,
 + ABSERR, NEVAL, IER, LENIW, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE DQAGP
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 break points of the integration interval, where local
 difficulties of the integrand may occur (e.g.
 SINGULARITIES, DISCONTINUITIES), are provided by the user.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE DOUBLE PRECISION (QAGP-S, DQAGP-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
 GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
 SINGULARITIES AT USER SPECIFIED POINTS
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 NPTS2 - Integer
 Number equal to two more than the number of
 user-supplied break points within the integration
 range, NPTS.GE.2.
 If NPTS2.LT.2, The routine will end with IER = 6.

 POINTS - Double precision
 Vector of dimension NPTS2, the first (NPTS2-2)
 elements of which are the user provided break
 points. If these points do not constitute an
 ascending sequence there will be an automatic
 sorting.

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision

SLATEC3 (DACOSH through DS2Y) - 509

 Relative accuracy requested
 If EPSABS.LE.0
 And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 The routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. it is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. one can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (i.e. SINGULARITY,
 DISCONTINUITY within the interval), it
 should be supplied to the routine as an
 element of the vector points. If necessary
 an appropriate special-purpose integrator
 must be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 roundoff error is detected in the
 extrapolation table.
 It is presumed that the requested
 tolerance cannot be achieved, and that
 the returned RESULT is the best which
 can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. it must be noted that
 divergence can occur with any other value
 of IER.GT.0.
 = 6 The input is invalid because

SLATEC3 (DACOSH through DS2Y) - 510

 NPTS2.LT.2 or
 break points are specified outside
 the integration range or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LENIW or LENW or NPTS2
 is invalid, IWORK(1), IWORK(LIMIT+1),
 WORK(LIMIT*2+1) and WORK(LIMIT*3+1)
 are set to zero.
 WORK(1) is set to A and WORK(LIMIT+1)
 to B (where LIMIT = (LENIW-NPTS2)/2).

 DIMENSIONING PARAMETERS
 LENIW - Integer
 Dimensioning parameter for IWORK
 LENIW determines LIMIT = (LENIW-NPTS2)/2,
 which is the maximum number of subintervals in the
 partition of the given integration interval (A,B),
 LENIW.GE.(3*NPTS2-2).
 If LENIW.LT.(3*NPTS2-2), the routine will end with
 IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LENIW*2-NPTS2.
 If LENW.LT.LENIW*2-NPTS2, the routine will end
 with IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LENIW. on return,
 the first K elements of which contain
 pointers to the error estimates over the
 subintervals, such that WORK(LIMIT*3+IWORK(1)),...,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with K = LAST if LAST.LE.(LIMIT/2+2), and
 K = LIMIT+1-LAST otherwise
 IWORK(LIMIT+1), ...,IWORK(LIMIT+LAST) Contain the
 subdivision levels of the subintervals, i.e.
 if (AA,BB) is a subinterval of (P1,P2)
 where P1 as well as P2 is a user-provided
 break point or integration LIMIT, then (AA,BB) has
 level L if ABS(BB-AA) = ABS(P2-P1)*2**(-L),
 IWORK(LIMIT*2+1), ..., IWORK(LIMIT*2+NPTS2) have
 no significance for the user,
 note that LIMIT = (LENIW-NPTS2)/2.

 WORK - Double precision
 Vector of dimension at least LENW
 on return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the
 partition of (A,B),

SLATEC3 (DACOSH through DS2Y) - 511

 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the corresponding error estimates,
 WORK(LIMIT*4+1), ..., WORK(LIMIT*4+NPTS2)
 contain the integration limits and the
 break points sorted in an ascending sequence.
 note that LIMIT = (LENIW-NPTS2)/2.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQAGPE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 512

DQAGPE

 SUBROUTINE DQAGPE (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, LIMIT,
 RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, PTS,
 + IORD, LEVEL, NDIN, LAST)
 ***BEGIN PROLOGUE DQAGPE
 ***PURPOSE Approximate a given definite integral I = Integral of F
 over (A,B), hopefully satisfying the accuracy claim:
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 Break points of the integration interval, where local
 difficulties of the integrand may occur (e.g. singularities
 or discontinuities) are provided by the user.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE DOUBLE PRECISION (QAGPE-S, DQAGPE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
 GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
 SINGULARITIES AT USER SPECIFIED POINTS
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 NPTS2 - Integer
 Number equal to two more than the number of
 user-supplied break points within the integration
 range, NPTS2.GE.2.
 If NPTS2.LT.2, the routine will end with IER = 6.

 POINTS - Double precision
 Vector of dimension NPTS2, the first (NPTS2-2)
 elements of which are the user provided break
 POINTS. If these POINTS do not constitute an
 ascending sequence there will be an automatic
 sorting.

 EPSABS - Double precision
 Absolute accuracy requested

SLATEC3 (DACOSH through DS2Y) - 513

 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.NPTS2
 If LIMIT.LT.NPTS2, the routine will end with
 IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (i.e. SINGULARITY,
 DISCONTINUITY within the interval), it
 should be supplied to the routine as an
 element of the vector points. If necessary
 an appropriate special-purpose integrator
 must be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 At some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table. It is presumed that
 the requested tolerance cannot be
 achieved, and that the returned result is

SLATEC3 (DACOSH through DS2Y) - 514

 the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.GT.0.
 = 6 The input is invalid because
 NPTS2.LT.2 or
 Break points are specified outside
 the integration range or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or LIMIT.LT.NPTS2.
 RESULT, ABSERR, NEVAL, LAST, RLIST(1),
 and ELIST(1) are set to zero. ALIST(1) and
 BLIST(1) are set to A and B respectively.

 ALIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left end points
 of the subintervals in the partition of the given
 integration range (A,B)

 BLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right end points
 of the subintervals in the partition of the given
 integration range (A,B)

 RLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 PTS - Double precision
 Vector of dimension at least NPTS2, containing the
 integration limits and the break points of the
 interval in ascending sequence.

 LEVEL - Integer
 Vector of dimension at least LIMIT, containing the
 subdivision levels of the subinterval, i.e. if
 (AA,BB) is a subinterval of (P1,P2) where P1 as
 well as P2 is a user-provided break point or
 integration limit, then (AA,BB) has level L if
 ABS(BB-AA) = ABS(P2-P1)*2**(-L).

 NDIN - Integer
 Vector of dimension at least NPTS2, after first
 integration over the intervals (PTS(I)),PTS(I+1),
 I = 0,1, ..., NPTS2-2, the error estimates over
 some of the intervals may have been increased
 artificially, in order to put their subdivision
 forward. If this happens for the subinterval
 numbered K, NDIN(K) is put to 1, otherwise
 NDIN(K) = 0.

SLATEC3 (DACOSH through DS2Y) - 515

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the
 error estimates over the subintervals,
 such that ELIST(IORD(1)), ..., ELIST(IORD(K))
 form a decreasing sequence, with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise

 LAST - Integer
 Number of subintervals actually produced in the
 subdivisions process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DQELG, DQK21, DQPSRT
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 516

DQAGS

 SUBROUTINE DQAGS (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
 + IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE DQAGS
 ***PURPOSE The routine calculates an approximation result to a given
 Definite integral I = Integral of F over (A,B),
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE DOUBLE PRECISION (QAGS-S, DQAGS-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
 EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to be
 Declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 The routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer

SLATEC3 (DACOSH through DS2Y) - 517

 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more sub-
 divisions by increasing the value of LIMIT
 (and taking the according dimension
 adjustments into account. However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (E.G. SINGULARITY,
 DISCONTINUITY WITHIN THE INTERVAL) one
 will probably gain from splitting up the
 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is detec-
 ted, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour
 occurs at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 Extrapolation table. It is presumed that
 the requested tolerance cannot be
 achieved, and that the returned result is
 the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because
 (EPSABS.LE.0 AND
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28)
 OR LIMIT.LT.1 OR LENW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LIMIT or LENW is
 invalid, IWORK(1), WORK(LIMIT*2+1) and
 WORK(LIMIT*3+1) are set to zero, WORK(1)
 is set to A and WORK(LIMIT+1) TO B.

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 DIMENSIONING PARAMETER FOR IWORK
 LIMIT determines the maximum number of subintervals
 in the partition of the given integration interval

SLATEC3 (DACOSH through DS2Y) - 518

 (A,B), LIMIT.GE.1.
 IF LIMIT.LT.1, the routine will end with IER = 6.

 LENW - Integer
 DIMENSIONING PARAMETER FOR WORK
 LENW must be at least LIMIT*4.
 If LENW.LT.LIMIT*4, the routine will end
 with IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, determines the
 number of significant elements actually in the WORK
 Arrays.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which contain pointers
 to the error estimates over the subintervals
 such that WORK(LIMIT*3+IWORK(1)),... ,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with K = LAST IF LAST.LE.(LIMIT/2+2),
 and K = LIMIT+1-LAST otherwise

 WORK - Double precision
 Vector of dimension at least LENW
 on return
 WORK(1), ..., WORK(LAST) contain the left
 end-points of the subintervals in the
 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end-points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQAGSE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 519

DQAGSE

 SUBROUTINE DQAGSE (F, A, B, EPSABS, EPSREL, LIMIT, RESULT, ABSERR,
 + NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE DQAGSE
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE DOUBLE PRECISION (QAGSE-S, DQAGSE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
 EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a definite integral
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B)

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,

SLATEC3 (DACOSH through DS2Y) - 520

 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 the estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more sub-
 divisions by increasing the value of LIMIT
 (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties. If
 the position of a local difficulty can be
 determined (e.g. singularity,
 discontinuity within the interval) one
 will probably gain from splitting up the
 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used, which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is detec-
 ted, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour
 occurs at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table.
 It is presumed that the requested
 tolerance cannot be achieved, and that the
 returned result is the best which can be
 obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because
 EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
 RESULT, ABSERR, NEVAL, LAST, RLIST(1),
 IORD(1) and ELIST(1) are set to zero.
 ALIST(1) and BLIST(1) are set to A and B
 respectively.

 ALIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left end points

SLATEC3 (DACOSH through DS2Y) - 521

 of the subintervals in the partition of the
 given integration range (A,B)

 BLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right end points
 of the subintervals in the partition of the given
 integration range (A,B)

 RLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the
 error estimates over the subintervals,
 such that ELIST(IORD(1)), ..., ELIST(IORD(K))
 form a decreasing sequence, with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise

 LAST - Integer
 Number of subintervals actually produced in the
 subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DQELG, DQK21, DQPSRT
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 522

DQAWC

 SUBROUTINE DQAWC (F, A, B, C, EPSABS, EPSREL, RESULT, ABSERR,
 + NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE DQAWC
 ***PURPOSE The routine calculates an approximation result to a
 Cauchy principal value I = INTEGRAL of F*W over (A,B)
 (W(X) = 1/((X-C), C.NE.A, C.NE.B), hopefully satisfying
 following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABE,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1, J4
 ***TYPE DOUBLE PRECISION (QAWC-S, DQAWC-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
 CLENSHAW-CURTIS METHOD, GLOBALLY ADAPTIVE, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a Cauchy principal value
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Under limit of integration

 B - Double precision
 Upper limit of integration

 C - Parameter in the weight function, C.NE.A, C.NE.B.
 If C = A or C = B, the routine will end with
 IER = 6 .

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

SLATEC3 (DACOSH through DS2Y) - 523

 ABSERR - Double precision
 Estimate or the modulus of the absolute error,
 Which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 the estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more sub-
 divisions by increasing the value of LIMIT
 (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand in order to
 determine the integration difficulties.
 If the position of a local difficulty
 can be determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling
 appropriate integrators on the subranges.
 = 2 The occurrence of roundoff error is detec-
 ted, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 6 The input is invalid, because
 C = A or C = B or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or LIMIT.LT.1 or LENW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LENW or LIMIT is
 invalid, IWORK(1), WORK(LIMIT*2+1) and
 WORK(LIMIT*3+1) are set to zero, WORK(1)
 is set to A and WORK(LIMIT+1) to B.

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 LIMIT determines the maximum number of subintervals
 in the partition of the given integration interval
 (A,B), LIMIT.GE.1.
 If LIMIT.LT.1, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LIMIT*4.
 If LENW.LT.LIMIT*4, the routine will end with
 IER = 6.

SLATEC3 (DACOSH through DS2Y) - 524

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which contain pointers
 to the error estimates over the subintervals,
 such that WORK(LIMIT*3+IWORK(1)), ... ,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with K = LAST if LAST.LE.(LIMIT/2+2),
 and K = LIMIT+1-LAST otherwise

 WORK - Double precision
 Vector of dimension at least LENW
 On return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the
 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQAWCE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 525

DQAWCE

 SUBROUTINE DQAWCE (F, A, B, C, EPSABS, EPSREL, LIMIT, RESULT,
 + ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
 ***BEGIN PROLOGUE DQAWCE
 ***PURPOSE The routine calculates an approximation result to a
 CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
 (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
 following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1, J4
 ***TYPE DOUBLE PRECISION (QAWCE-S, DQAWCE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
 CLENSHAW-CURTIS METHOD, QUADPACK, QUADRATURE,
 SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of a CAUCHY PRINCIPAL VALUE
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 C - Double precision
 Parameter in the WEIGHT function, C.NE.A, C.NE.B
 If C = A OR C = B, the routine will end with
 IER = 6.

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.1

SLATEC3 (DACOSH through DS2Y) - 526

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 the estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more sub-
 divisions by increasing the value of
 LIMIT. However, if this yields no
 improvement it is advised to analyze the
 the integrand, in order to determine the
 the integration difficulties. If the
 position of a local difficulty can be
 determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the
 interval at this point and calling
 appropriate integrators on the subranges.
 = 2 The occurrence of roundoff error is detec-
 ted, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour
 occurs at some interior points of
 the integration interval.
 = 6 The input is invalid, because
 C = A or C = B or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or LIMIT.LT.1.
 RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
 IORD(1) and LAST are set to zero. ALIST(1)
 and BLIST(1) are set to A and B
 respectively.

 ALIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the given integration range (A,B)

 BLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the given integration range (A,B)

SLATEC3 (DACOSH through DS2Y) - 527

 RLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Double precision
 Vector of dimension LIMIT, the first LAST
 elements of which are the moduli of the absolute
 error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the error
 estimates over the subintervals, so that
 ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise, form a decreasing sequence

 LAST - Integer
 Number of subintervals actually produced in
 the subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DQC25C, DQPSRT
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 528

DQAWF

 SUBROUTINE DQAWF (F, A, OMEGA, INTEGR, EPSABS, RESULT, ABSERR,
 + NEVAL, IER, LIMLST, LST, LENIW, MAXP1, LENW, IWORK, WORK)
 ***BEGIN PROLOGUE DQAWF
 ***PURPOSE The routine calculates an approximation result to a given
 Fourier integral I=Integral of F(X)*W(X) over (A,INFINITY)
 where W(X) = COS(OMEGA*X) or W(X) = SIN(OMEGA*X).
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.EPSABS.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A1
 ***TYPE DOUBLE PRECISION (QAWF-S, DQAWF-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CONVERGENCE ACCELERATION,
 FOURIER INTEGRALS, INTEGRATION BETWEEN ZEROS, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE INTEGRAL
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of Fourier integrals
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 OMEGA - Double precision
 Parameter in the integrand WEIGHT function

 INTEGR - Integer
 Indicates which of the WEIGHT functions is used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)
 IF INTEGR.NE.1.AND.INTEGR.NE.2, the routine
 will end with IER = 6.

 EPSABS - Double precision
 Absolute accuracy requested, EPSABS.GT.0.
 If EPSABS.LE.0, the routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision

SLATEC3 (DACOSH through DS2Y) - 529

 Estimate of the modulus of the absolute error,
 Which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 If OMEGA.NE.0
 IER = 1 Maximum number of cycles allowed
 has been achieved, i.e. of subintervals
 (A+(K-1)C,A+KC) where
 C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
 FOR K = 1, 2, ..., LST.
 One can allow more cycles by increasing
 the value of LIMLST (and taking the
 according dimension adjustments into
 account). Examine the array IWORK which
 contains the error flags on the cycles, in
 order to look for eventual local
 integration difficulties.
 If the position of a local difficulty
 can be determined (e.g. singularity,
 discontinuity within the interval) one
 will probably gain from splitting up the
 interval at this point and calling
 appropriate integrators on the subranges.
 = 4 The extrapolation table constructed for
 convergence acceleration of the series
 formed by the integral contributions over
 the cycles, does not converge to within
 the requested accuracy.
 As in the case of IER = 1, it is advised
 to examine the array IWORK which contains
 the error flags on the cycles.
 = 6 The input is invalid because
 (INTEGR.NE.1 AND INTEGR.NE.2) or
 EPSABS.LE.0 or LIMLST.LT.1 or
 LENIW.LT.(LIMLST+2) or MAXP1.LT.1 or
 LENW.LT.(LENIW*2+MAXP1*25).
 RESULT, ABSERR, NEVAL, LST are set to
 zero.
 = 7 Bad integrand behaviour occurs within
 one or more of the cycles. Location and
 type of the difficulty involved can be
 determined from the first LST elements of
 vector IWORK. Here LST is the number of
 cycles actually needed (see below).
 IWORK(K) = 1 The maximum number of
 subdivisions (=(LENIW-LIMLST)
 /2) has been achieved on the
 K th cycle.
 = 2 Occurrence of roundoff error

SLATEC3 (DACOSH through DS2Y) - 530

 is detected and prevents the
 tolerance imposed on the K th
 cycle, from being achieved
 on this cycle.
 = 3 Extremely bad integrand
 behaviour occurs at some
 points of the K th cycle.
 = 4 The integration procedure
 over the K th cycle does
 not converge (to within the
 required accuracy) due to
 roundoff in the extrapolation
 procedure invoked on this
 cycle. It is assumed that the
 result on this interval is
 the best which can be
 obtained.
 = 5 The integral over the K th
 cycle is probably divergent
 or slowly convergent. It must
 be noted that divergence can
 occur with any other value of
 IWORK(K).
 If OMEGA = 0 and INTEGR = 1,
 The integral is calculated by means of DQAGIE,
 and IER = IWORK(1) (with meaning as described
 for IWORK(K),K = 1).

 DIMENSIONING PARAMETERS
 LIMLST - Integer
 LIMLST gives an upper bound on the number of
 cycles, LIMLST.GE.3.
 If LIMLST.LT.3, the routine will end with IER = 6.

 LST - Integer
 On return, LST indicates the number of cycles
 actually needed for the integration.
 If OMEGA = 0, then LST is set to 1.

 LENIW - Integer
 Dimensioning parameter for IWORK. On entry,
 (LENIW-LIMLST)/2 equals the maximum number of
 subintervals allowed in the partition of each
 cycle, LENIW.GE.(LIMLST+2).
 If LENIW.LT.(LIMLST+2), the routine will end with
 IER = 6.

 MAXP1 - Integer
 MAXP1 gives an upper bound on the number of
 Chebyshev moments which can be stored, i.e. for
 the intervals of lengths ABS(B-A)*2**(-L),
 L = 0,1, ..., MAXP1-2, MAXP1.GE.1.
 If MAXP1.LT.1, the routine will end with IER = 6.
 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LENIW*2+MAXP1*25.
 If LENW.LT.(LENIW*2+MAXP1*25), the routine will
 end with IER = 6.

 WORK ARRAYS

SLATEC3 (DACOSH through DS2Y) - 531

 IWORK - Integer
 Vector of dimension at least LENIW
 On return, IWORK(K) FOR K = 1, 2, ..., LST
 contain the error flags on the cycles.

 WORK - Double precision
 Vector of dimension at least
 On return,
 WORK(1), ..., WORK(LST) contain the integral
 approximations over the cycles,
 WORK(LIMLST+1), ..., WORK(LIMLST+LST) contain
 the error estimates over the cycles.
 further elements of WORK have no specific
 meaning for the user.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQAWFE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 532

DQAWFE

 SUBROUTINE DQAWFE (F, A, OMEGA, INTEGR, EPSABS, LIMLST, LIMIT,
 + MAXP1, RESULT, ABSERR, NEVAL, IER, RSLST, ERLST, IERLST, LST,
 + ALIST, BLIST, RLIST, ELIST, IORD, NNLOG, CHEBMO)
 ***BEGIN PROLOGUE DQAWFE
 ***PURPOSE The routine calculates an approximation result to a
 given Fourier integral
 I = Integral of F(X)*W(X) over (A,INFINITY)
 where W(X)=COS(OMEGA*X) or W(X)=SIN(OMEGA*X),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.EPSABS.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A1
 ***TYPE DOUBLE PRECISION (QAWFE-S, DQAWFE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CONVERGENCE ACCELERATION,
 FOURIER INTEGRALS, INTEGRATION BETWEEN ZEROS, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE INTEGRAL
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of Fourier integrals
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 Function F(X). The actual name for F needs to
 be declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 OMEGA - Double precision
 Parameter in the WEIGHT function

 INTEGR - Integer
 Indicates which WEIGHT function is used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)
 If INTEGR.NE.1.AND.INTEGR.NE.2, the routine will
 end with IER = 6.

 EPSABS - Double precision
 absolute accuracy requested, EPSABS.GT.0
 If EPSABS.LE.0, the routine will end with IER = 6.

 LIMLST - Integer
 LIMLST gives an upper bound on the number of
 cycles, LIMLST.GE.1.
 If LIMLST.LT.3, the routine will end with IER = 6.

SLATEC3 (DACOSH through DS2Y) - 533

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 allowed in the partition of each cycle, LIMIT.GE.1
 each cycle, LIMIT.GE.1.

 MAXP1 - Integer
 Gives an upper bound on the number of
 Chebyshev moments which can be stored, I.E.
 for the intervals of lengths ABS(B-A)*2**(-L),
 L=0,1, ..., MAXP1-2, MAXP1.GE.1

 ON RETURN
 RESULT - Double precision
 Approximation to the integral X

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - IER = 0 Normal and reliable termination of
 the routine. It is assumed that the
 requested accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine. The
 estimates for integral and error are less
 reliable. It is assumed that the requested
 accuracy has not been achieved.
 ERROR MESSAGES
 If OMEGA.NE.0
 IER = 1 Maximum number of cycles allowed
 Has been achieved., i.e. of subintervals
 (A+(K-1)C,A+KC) where
 C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
 for K = 1, 2, ..., LST.
 One can allow more cycles by increasing
 the value of LIMLST (and taking the
 according dimension adjustments into
 account).
 Examine the array IWORK which contains
 the error flags on the cycles, in order to
 look for eventual local integration
 difficulties. If the position of a local
 difficulty can be determined (e.g.
 SINGULARITY, DISCONTINUITY within the
 interval) one will probably gain from
 splitting up the interval at this point
 and calling appropriate integrators on
 the subranges.
 = 4 The extrapolation table constructed for
 convergence acceleration of the series
 formed by the integral contributions over
 the cycles, does not converge to within
 the requested accuracy. As in the case of
 IER = 1, it is advised to examine the
 array IWORK which contains the error
 flags on the cycles.
 = 6 The input is invalid because

SLATEC3 (DACOSH through DS2Y) - 534

 (INTEGR.NE.1 AND INTEGR.NE.2) or
 EPSABS.LE.0 or LIMLST.LT.3.
 RESULT, ABSERR, NEVAL, LST are set
 to zero.
 = 7 Bad integrand behaviour occurs within one
 or more of the cycles. Location and type
 of the difficulty involved can be
 determined from the vector IERLST. Here
 LST is the number of cycles actually
 needed (see below).
 IERLST(K) = 1 The maximum number of
 subdivisions (= LIMIT) has
 been achieved on the K th
 cycle.
 = 2 Occurrence of roundoff error
 is detected and prevents the
 tolerance imposed on the
 K th cycle, from being
 achieved.
 = 3 Extremely bad integrand
 behaviour occurs at some
 points of the K th cycle.
 = 4 The integration procedure
 over the K th cycle does
 not converge (to within the
 required accuracy) due to
 roundoff in the
 extrapolation procedure
 invoked on this cycle. It
 is assumed that the result
 on this interval is the
 best which can be obtained.
 = 5 The integral over the K th
 cycle is probably divergent
 or slowly convergent. It
 must be noted that
 divergence can occur with
 any other value of
 IERLST(K).
 If OMEGA = 0 and INTEGR = 1,
 The integral is calculated by means of DQAGIE
 and IER = IERLST(1) (with meaning as described
 for IERLST(K), K = 1).

 RSLST - Double precision
 Vector of dimension at least LIMLST
 RSLST(K) contains the integral contribution
 over the interval (A+(K-1)C,A+KC) where
 C = (2*INT(ABS(OMEGA))+1)*PI/ABS(OMEGA),
 K = 1, 2, ..., LST.
 Note that, if OMEGA = 0, RSLST(1) contains
 the value of the integral over (A,INFINITY).

 ERLST - Double precision
 Vector of dimension at least LIMLST
 ERLST(K) contains the error estimate corresponding
 with RSLST(K).

 IERLST - Integer
 Vector of dimension at least LIMLST

SLATEC3 (DACOSH through DS2Y) - 535

 IERLST(K) contains the error flag corresponding
 with RSLST(K). For the meaning of the local error
 flags see description of output parameter IER.

 LST - Integer
 Number of subintervals needed for the integration
 If OMEGA = 0 then LST is set to 1.

 ALIST, BLIST, RLIST, ELIST - Double precision
 vector of dimension at least LIMIT,

 IORD, NNLOG - Integer
 Vector of dimension at least LIMIT, providing
 space for the quantities needed in the subdivision
 process of each cycle

 CHEBMO - Double precision
 Array of dimension at least (MAXP1,25), providing
 space for the Chebyshev moments needed within the
 cycles

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DQAGIE, DQAWOE, DQELG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 536

DQAWO

 SUBROUTINE DQAWO (F, A, B, OMEGA, INTEGR, EPSABS, EPSREL, RESULT,
 + ABSERR, NEVAL, IER, LENIW, MAXP1, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE DQAWO
 ***PURPOSE Calculate an approximation to a given definite integral
 I= Integral of F(X)*W(X) over (A,B), where
 W(X) = COS(OMEGA*X)
 or W(X) = SIN(OMEGA*X),
 hopefully satisfying the following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE DOUBLE PRECISION (QAWO-S, DQAWO-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
 EXTRAPOLATION, GLOBALLY ADAPTIVE,
 INTEGRAND WITH OSCILLATORY COS OR SIN FACTOR, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of oscillatory integrals
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the function
 F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 OMEGA - Double precision
 Parameter in the integrand weight function

 INTEGR - Integer
 Indicates which of the weight functions is used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)
 If INTEGR.NE.1.AND.INTEGR.NE.2, the routine will
 end with IER = 6.

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0 and

SLATEC3 (DACOSH through DS2Y) - 537

 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 - IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved (= LENIW/2). One can
 allow more subdivisions by increasing the
 value of LENIW (and taking the according
 dimension adjustments into account).
 However, if this yields no improvement it
 is advised to analyze the integrand in
 order to determine the integration
 difficulties. If the position of a local
 difficulty can be determined (e.g.
 SINGULARITY, DISCONTINUITY within the
 interval) one will probably gain from
 splitting up the interval at this point
 and calling the integrator on the
 subranges. If possible, an appropriate
 special-purpose integrator should be used
 which is designed for handling the type of
 difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some interior points of the
 integration interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table. It is presumed that
 the requested tolerance cannot be achieved
 due to roundoff in the extrapolation
 table, and that the returned result is
 the best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.
 = 6 The input is invalid, because

SLATEC3 (DACOSH through DS2Y) - 538

 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or (INTEGR.NE.1 AND INTEGR.NE.2),
 or LENIW.LT.2 OR MAXP1.LT.1 or
 LENW.LT.LENIW*2+MAXP1*25.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LENIW, MAXP1 or LENW are
 invalid, WORK(LIMIT*2+1), WORK(LIMIT*3+1),
 IWORK(1), IWORK(LIMIT+1) are set to zero,
 WORK(1) is set to A and WORK(LIMIT+1) to
 B.

 DIMENSIONING PARAMETERS
 LENIW - Integer
 Dimensioning parameter for IWORK.
 LENIW/2 equals the maximum number of subintervals
 allowed in the partition of the given integration
 interval (A,B), LENIW.GE.2.
 If LENIW.LT.2, the routine will end with IER = 6.

 MAXP1 - Integer
 Gives an upper bound on the number of Chebyshev
 moments which can be stored, i.e. for the
 intervals of lengths ABS(B-A)*2**(-L),
 L=0,1, ..., MAXP1-2, MAXP1.GE.1
 If MAXP1.LT.1, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LENIW*2+MAXP1*25.
 If LENW.LT.(LENIW*2+MAXP1*25), the routine will
 end with IER = 6.

 LAST - Integer
 On return, LAST equals the number of subintervals
 produced in the subdivision process, which
 determines the number of significant elements
 actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension at least LENIW
 on return, the first K elements of which contain
 pointers to the error estimates over the
 subintervals, such that WORK(LIMIT*3+IWORK(1)), ..
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence, with LIMIT = LENW/2 , and K = LAST
 if LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise.
 Furthermore, IWORK(LIMIT+1), ..., IWORK(LIMIT+
 LAST) indicate the subdivision levels of the
 subintervals, such that IWORK(LIMIT+I) = L means
 that the subinterval numbered I is of length
 ABS(B-A)*2**(1-L).

 WORK - Double precision
 Vector of dimension at least LENW
 On return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the

SLATEC3 (DACOSH through DS2Y) - 539

 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
 the integral approximations over the
 subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the error estimates.
 WORK(LIMIT*4+1), ..., WORK(LIMIT*4+MAXP1*25)
 Provide space for storing the Chebyshev moments.
 Note that LIMIT = LENW/2.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQAWOE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 540

DQAWOE

 SUBROUTINE DQAWOE (F, A, B, OMEGA, INTEGR, EPSABS, EPSREL, LIMIT,
 + ICALL, MAXP1, RESULT, ABSERR, NEVAL, IER, LAST, ALIST, BLIST,
 + RLIST, ELIST, IORD, NNLOG, MOMCOM, CHEBMO)
 ***BEGIN PROLOGUE DQAWOE
 ***PURPOSE Calculate an approximation to a given definite integral
 I = Integral of F(X)*W(X) over (A,B), where
 W(X) = COS(OMEGA*X)
 or W(X)=SIN(OMEGA*X),
 hopefully satisfying the following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE DOUBLE PRECISION (QAWOE-S, DQAWOE-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
 EXTRAPOLATION, GLOBALLY ADAPTIVE,
 INTEGRAND WITH OSCILLATORY COS OR SIN FACTOR, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Computation of Oscillatory integrals
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 OMEGA - Double precision
 Parameter in the integrand weight function

 INTEGR - Integer
 Indicates which of the WEIGHT functions is to be
 used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)
 If INTEGR.NE.1 and INTEGR.NE.2, the routine
 will end with IER = 6.

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision

SLATEC3 (DACOSH through DS2Y) - 541

 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subdivisions
 in the partition of (A,B), LIMIT.GE.1.

 ICALL - Integer
 If DQAWOE is to be used only once, ICALL must
 be set to 1. Assume that during this call, the
 Chebyshev moments (for CLENSHAW-CURTIS integration
 of degree 24) have been computed for intervals of
 lengths (ABS(B-A))*2**(-L), L=0,1,2,...MOMCOM-1.
 If ICALL.GT.1 this means that DQAWOE has been
 called twice or more on intervals of the same
 length ABS(B-A). The Chebyshev moments already
 computed are then re-used in subsequent calls.
 If ICALL.LT.1, the routine will end with IER = 6.

 MAXP1 - Integer
 Gives an upper bound on the number of Chebyshev
 moments which can be stored, i.e. for the
 intervals of lengths ABS(B-A)*2**(-L),
 L=0,1, ..., MAXP1-2, MAXP1.GE.1.
 If MAXP1.LT.1, the routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the
 requested accuracy has been achieved.
 - IER.GT.0 Abnormal termination of the routine.
 The estimates for integral and error are
 less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand, in order to
 determine the integration difficulties.
 If the position of a local difficulty can
 be determined (e.g. SINGULARITY,
 DISCONTINUITY within the interval) one
 will probably gain from splitting up the

SLATEC3 (DACOSH through DS2Y) - 542

 interval at this point and calling the
 integrator on the subranges. If possible,
 an appropriate special-purpose integrator
 should be used which is designed for
 handling the type of difficulty involved.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 The error may be under-estimated.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 4 The algorithm does not converge.
 Roundoff error is detected in the
 extrapolation table.
 It is presumed that the requested
 tolerance cannot be achieved due to
 roundoff in the extrapolation table,
 and that the returned result is the
 best which can be obtained.
 = 5 The integral is probably divergent, or
 slowly convergent. It must be noted that
 divergence can occur with any other value
 of IER.GT.0.
 = 6 The input is invalid, because
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
 or (INTEGR.NE.1 and INTEGR.NE.2) or
 ICALL.LT.1 or MAXP1.LT.1.
 RESULT, ABSERR, NEVAL, LAST, RLIST(1),
 ELIST(1), IORD(1) and NNLOG(1) are set
 to ZERO. ALIST(1) and BLIST(1) are set
 to A and B respectively.

 LAST - Integer
 On return, LAST equals the number of
 subintervals produces in the subdivision
 process, which determines the number of
 significant elements actually in the
 WORK ARRAYS.
 ALIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the given integration range (A,B)

 BLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the given integration range (A,B)

 RLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the

SLATEC3 (DACOSH through DS2Y) - 543

 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 elements of which are pointers to the error
 estimates over the subintervals,
 such that ELIST(IORD(1)), ...,
 ELIST(IORD(K)) form a decreasing sequence, with
 K = LAST if LAST.LE.(LIMIT/2+2), and
 K = LIMIT+1-LAST otherwise.

 NNLOG - Integer
 Vector of dimension at least LIMIT, containing the
 subdivision levels of the subintervals, i.e.
 IWORK(I) = L means that the subinterval
 numbered I is of length ABS(B-A)*2**(1-L)

 ON ENTRY AND RETURN
 MOMCOM - Integer
 Indicating that the Chebyshev moments
 have been computed for intervals of lengths
 (ABS(B-A))*2**(-L), L=0,1,2, ..., MOMCOM-1,
 MOMCOM.LT.MAXP1

 CHEBMO - Double precision
 Array of dimension (MAXP1,25) containing the
 Chebyshev moments

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DQC25F, DQELG, DQPSRT
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 544

DQAWS

 SUBROUTINE DQAWS (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
 + RESULT, ABSERR, NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
 ***BEGIN PROLOGUE DQAWS
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F*W over (A,B),
 (where W shows a singular behaviour at the end points
 see parameter INTEGR).
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE DOUBLE PRECISION (QAWS-S, DQAWS-D)
 ***KEYWORDS ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
 AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD,
 GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration of functions having algebraico-logarithmic
 end point singularities
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration, B.GT.A
 If B.LE.A, the routine will end with IER = 6.

 ALFA - Double precision
 Parameter in the integrand function, ALFA.GT.(-1)
 If ALFA.LE.(-1), the routine will end with
 IER = 6.

 BETA - Double precision
 Parameter in the integrand function, BETA.GT.(-1)
 If BETA.LE.(-1), the routine will end with
 IER = 6.

 INTEGR - Integer
 Indicates which WEIGHT function is to be used
 = 1 (X-A)**ALFA*(B-X)**BETA
 = 2 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)

SLATEC3 (DACOSH through DS2Y) - 545

 = 3 (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
 = 4 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
 If INTEGR.LT.1 or INTEGR.GT.4, the routine
 will end with IER = 6.

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 Which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 The estimates for the integral and error
 are less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 IER = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT (and taking the according dimension
 adjustments into account). However, if
 this yields no improvement it is advised
 to analyze the integrand, in order to
 determine the integration difficulties
 which prevent the requested tolerance from
 being achieved. In case of a jump
 discontinuity or a local singularity
 of algebraico-logarithmic type at one or
 more interior points of the integration
 range, one should proceed by splitting up
 the interval at these points and calling
 the integrator on the subranges.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.
 = 6 The input is invalid, because
 B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1) or
 or INTEGR.LT.1 or INTEGR.GT.4 or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))

SLATEC3 (DACOSH through DS2Y) - 546

 or LIMIT.LT.2 or LENW.LT.LIMIT*4.
 RESULT, ABSERR, NEVAL, LAST are set to
 zero. Except when LENW or LIMIT is invalid
 IWORK(1), WORK(LIMIT*2+1) and
 WORK(LIMIT*3+1) are set to zero, WORK(1)
 is set to A and WORK(LIMIT+1) to B.

 DIMENSIONING PARAMETERS
 LIMIT - Integer
 Dimensioning parameter for IWORK
 LIMIT determines the maximum number of
 subintervals in the partition of the given
 integration interval (A,B), LIMIT.GE.2.
 If LIMIT.LT.2, the routine will end with IER = 6.

 LENW - Integer
 Dimensioning parameter for WORK
 LENW must be at least LIMIT*4.
 If LENW.LT.LIMIT*4, the routine will end
 with IER = 6.

 LAST - Integer
 On return, LAST equals the number of
 subintervals produced in the subdivision process,
 which determines the significant number of
 elements actually in the WORK ARRAYS.

 WORK ARRAYS
 IWORK - Integer
 Vector of dimension LIMIT, the first K
 elements of which contain pointers
 to the error estimates over the subintervals,
 such that WORK(LIMIT*3+IWORK(1)), ...,
 WORK(LIMIT*3+IWORK(K)) form a decreasing
 sequence with K = LAST if LAST.LE.(LIMIT/2+2),
 and K = LIMIT+1-LAST otherwise

 WORK - Double precision
 Vector of dimension LENW
 On return
 WORK(1), ..., WORK(LAST) contain the left
 end points of the subintervals in the
 partition of (A,B),
 WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
 the right end points,
 WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST)
 contain the integral approximations over
 the subintervals,
 WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
 contain the error estimates.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQAWSE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 547

DQAWSE

 SUBROUTINE DQAWSE (F, A, B, ALFA, BETA, INTEGR, EPSABS, EPSREL,
 + LIMIT, RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST,
 + IORD, LAST)
 ***BEGIN PROLOGUE DQAWSE
 ***PURPOSE The routine calculates an approximation result to a given
 definite integral I = Integral of F*W over (A,B),
 (where W shows a singular behaviour at the end points,
 see parameter INTEGR).
 Hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1
 ***TYPE DOUBLE PRECISION (QAWSE-S, DQAWSE-D)
 ***KEYWORDS ALGEBRAIC-LOGARITHMIC END POINT SINGULARITIES,
 AUTOMATIC INTEGRATOR, CLENSHAW-CURTIS METHOD, QUADPACK,
 QUADRATURE, SPECIAL-PURPOSE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration of functions having algebraico-logarithmic
 end point singularities
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration, B.GT.A
 If B.LE.A, the routine will end with IER = 6.

 ALFA - Double precision
 Parameter in the WEIGHT function, ALFA.GT.(-1)
 If ALFA.LE.(-1), the routine will end with
 IER = 6.

 BETA - Double precision
 Parameter in the WEIGHT function, BETA.GT.(-1)
 If BETA.LE.(-1), the routine will end with
 IER = 6.

 INTEGR - Integer
 Indicates which WEIGHT function is to be used
 = 1 (X-A)**ALFA*(B-X)**BETA

SLATEC3 (DACOSH through DS2Y) - 548

 = 2 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
 = 3 (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
 = 4 (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*LOG(B-X)
 If INTEGR.LT.1 or INTEGR.GT.4, the routine
 will end with IER = 6.

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 the routine will end with IER = 6.

 LIMIT - Integer
 Gives an upper bound on the number of subintervals
 in the partition of (A,B), LIMIT.GE.2
 If LIMIT.LT.2, the routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - Integer
 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine
 the estimates for the integral and error
 are less reliable. It is assumed that the
 requested accuracy has not been achieved.
 ERROR MESSAGES
 = 1 Maximum number of subdivisions allowed
 has been achieved. One can allow more
 subdivisions by increasing the value of
 LIMIT. However, if this yields no
 improvement, it is advised to analyze the
 integrand in order to determine the
 integration difficulties which prevent the
 requested tolerance from being achieved.
 In case of a jump DISCONTINUITY or a local
 SINGULARITY of algebraico-logarithmic type
 at one or more interior points of the
 integration range, one should proceed by
 splitting up the interval at these
 points and calling the integrator on the
 subranges.
 = 2 The occurrence of roundoff error is
 detected, which prevents the requested
 tolerance from being achieved.
 = 3 Extremely bad integrand behaviour occurs
 at some points of the integration
 interval.

SLATEC3 (DACOSH through DS2Y) - 549

 = 6 The input is invalid, because
 B.LE.A or ALFA.LE.(-1) or BETA.LE.(-1), or
 INTEGR.LT.1 or INTEGR.GT.4, or
 (EPSABS.LE.0 and
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 or LIMIT.LT.2.
 RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
 IORD(1) and LAST are set to zero. ALIST(1)
 and BLIST(1) are set to A and B
 respectively.

 ALIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the left
 end points of the subintervals in the partition
 of the given integration range (A,B)

 BLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the right
 end points of the subintervals in the partition
 of the given integration range (A,B)

 RLIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the integral
 approximations on the subintervals

 ELIST - Double precision
 Vector of dimension at least LIMIT, the first
 LAST elements of which are the moduli of the
 absolute error estimates on the subintervals

 IORD - Integer
 Vector of dimension at least LIMIT, the first K
 of which are pointers to the error
 estimates over the subintervals, so that
 ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
 If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
 otherwise form a decreasing sequence

 LAST - Integer
 Number of subintervals actually produced in
 the subdivision process

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DQC25S, DQMOMO, DQPSRT
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 550

DQC25C

 SUBROUTINE DQC25C (F, A, B, C, RESULT, ABSERR, KRUL, NEVAL)
 ***BEGIN PROLOGUE DQC25C
 ***PURPOSE To compute I = Integral of F*W over (A,B) with
 error estimate, where W(X) = 1/(X-C)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A2, J4
 ***TYPE DOUBLE PRECISION (QC25C-S, DQC25C-D)
 ***KEYWORDS 25-POINT CLENSHAW-CURTIS INTEGRATION, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules for the computation of CAUCHY
 PRINCIPAL VALUE integrals
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 F - Double precision
 Function subprogram defining the integrand function
 F(X). The actual name for F needs to be declared
 E X T E R N A L in the driver program.

 A - Double precision
 Left end point of the integration interval

 B - Double precision
 Right end point of the integration interval, B.GT.A

 C - Double precision
 Parameter in the WEIGHT function

 RESULT - Double precision
 Approximation to the integral
 result is computed by using a generalized
 Clenshaw-Curtis method if C lies within ten percent
 of the integration interval. In the other case the
 15-point Kronrod rule obtained by optimal addition
 of abscissae to the 7-point Gauss rule, is applied.

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 KRUL - Integer
 Key which is decreased by 1 if the 15-point
 Gauss-Kronrod scheme has been used

 NEVAL - Integer
 Number of integrand evaluations

 ..

SLATEC3 (DACOSH through DS2Y) - 551

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQCHEB, DQK15W, DQWGTC
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 552

DQC25F

 SUBROUTINE DQC25F (F, A, B, OMEGA, INTEGR, NRMOM, MAXP1, KSAVE,
 + RESULT, ABSERR, NEVAL, RESABS, RESASC, MOMCOM, CHEBMO)
 ***BEGIN PROLOGUE DQC25F
 ***PURPOSE To compute the integral I=Integral of F(X) over (A,B)
 Where W(X) = COS(OMEGA*X) or W(X)=SIN(OMEGA*X) and to
 compute J = Integral of ABS(F) over (A,B). For small value
 of OMEGA or small intervals (A,B) the 15-point GAUSS-KRONRO
 Rule is used. Otherwise a generalized CLENSHAW-CURTIS
 method is used.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A2
 ***TYPE DOUBLE PRECISION (QC25F-S, DQC25F-D)
 ***KEYWORDS CLENSHAW-CURTIS METHOD, GAUSS-KRONROD RULES,
 INTEGRATION RULES FOR FUNCTIONS WITH COS OR SIN FACTOR,
 QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules for functions with COS or SIN factor
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to
 be declared E X T E R N A L in the calling program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 OMEGA - Double precision
 Parameter in the WEIGHT function

 INTEGR - Integer
 Indicates which WEIGHT function is to be used
 INTEGR = 1 W(X) = COS(OMEGA*X)
 INTEGR = 2 W(X) = SIN(OMEGA*X)

 NRMOM - Integer
 The length of interval (A,B) is equal to the length
 of the original integration interval divided by
 2**NRMOM (we suppose that the routine is used in an
 adaptive integration process, otherwise set
 NRMOM = 0). NRMOM must be zero at the first call.

 MAXP1 - Integer

SLATEC3 (DACOSH through DS2Y) - 553

 Gives an upper bound on the number of Chebyshev
 moments which can be stored, i.e. for the
 intervals of lengths ABS(BB-AA)*2**(-L),
 L = 0,1,2, ..., MAXP1-2.

 KSAVE - Integer
 Key which is one when the moments for the
 current interval have been computed

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I

 ABSERR - Double precision
 Estimate of the modulus of the absolute
 error, which should equal or exceed ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 RESABS - Double precision
 Approximation to the integral J

 RESASC - Double precision
 Approximation to the integral of ABS(F-I/(B-A))

 ON ENTRY AND RETURN
 MOMCOM - Integer
 For each interval length we need to compute the
 Chebyshev moments. MOMCOM counts the number of
 intervals for which these moments have already been
 computed. If NRMOM.LT.MOMCOM or KSAVE = 1, the
 Chebyshev moments for the interval (A,B) have
 already been computed and stored, otherwise we
 compute them and we increase MOMCOM.

 CHEBMO - Double precision
 Array of dimension at least (MAXP1,25) containing
 the modified Chebyshev moments for the first MOMCOM
 MOMCOM interval lengths

 ..

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, DGTSL, DQCHEB, DQK15W, DQWGTF
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 554

DQC25S

 SUBROUTINE DQC25S (F, A, B, BL, BR, ALFA, BETA, RI, RJ, RG, RH,
 + RESULT, ABSERR, RESASC, INTEGR, NEV)
 ***BEGIN PROLOGUE DQC25S
 ***PURPOSE To compute I = Integral of F*W over (BL,BR), with error
 estimate, where the weight function W has a singular
 behaviour of ALGEBRAICO-LOGARITHMIC type at the points
 A and/or B. (BL,BR) is a part of (A,B).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A2
 ***TYPE DOUBLE PRECISION (QC25S-S, DQC25S-D)
 ***KEYWORDS 25-POINT CLENSHAW-CURTIS INTEGRATION, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules for integrands having ALGEBRAICO-LOGARITHMIC
 end point singularities
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 F - Double precision
 Function subprogram defining the integrand
 F(X). The actual name for F needs to be declared
 E X T E R N A L in the driver program.

 A - Double precision
 Left end point of the original interval

 B - Double precision
 Right end point of the original interval, B.GT.A

 BL - Double precision
 Lower limit of integration, BL.GE.A

 BR - Double precision
 Upper limit of integration, BR.LE.B

 ALFA - Double precision
 PARAMETER IN THE WEIGHT FUNCTION

 BETA - Double precision
 Parameter in the weight function

 RI,RJ,RG,RH - Double precision
 Modified CHEBYSHEV moments for the application
 of the generalized CLENSHAW-CURTIS
 method (computed in subroutine DQMOMO)

 RESULT - Double precision
 Approximation to the integral
 RESULT is computed by using a generalized

SLATEC3 (DACOSH through DS2Y) - 555

 CLENSHAW-CURTIS method if B1 = A or BR = B.
 in all other cases the 15-POINT KRONROD
 RULE is applied, obtained by optimal addition of
 Abscissae to the 7-POINT GAUSS RULE.

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 RESASC - Double precision
 Approximation to the integral of ABS(F*W-I/(B-A))

 INTEGR - Integer
 Which determines the weight function
 = 1 W(X) = (X-A)**ALFA*(B-X)**BETA
 = 2 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)
 = 3 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(B-X)
 = 4 W(X) = (X-A)**ALFA*(B-X)**BETA*LOG(X-A)*
 LOG(B-X)

 NEV - Integer
 Number of integrand evaluations

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DQCHEB, DQK15W, DQWGTS
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 556

DQDOTA

 DOUBLE PRECISION FUNCTION DQDOTA (N, DB, QC, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE DQDOTA
 ***PURPOSE Compute the inner product of two vectors with extended
 precision accumulation and result.
 ***LIBRARY SLATEC
 ***CATEGORY D1A4
 ***TYPE DOUBLE PRECISION (DQDOTA-D)
 ***KEYWORDS DOT PRODUCT, INNER PRODUCT
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(S)
 DB double precision scalar to be added to inner product
 QC extended precision scalar to be added to inner product
 DX double precision vector with N elements
 INCX storage spacing between elements of DX
 DY double precision vector with N elements
 INCY storage spacing between elements of DY

 --Output--
 DQDOTA double precision result
 QC extended precision result

 D.P. dot product with extended precision accumulation (and result)
 QC and DQDOTA are set = DB + QC + sum for I = 0 to N-1 of
 DX(LX+I*INCX) * DY(LY+I*INCY), where QC is an extended
 precision result previously computed by DQDOTI or DQDOTA
 and LX = 1 if INCX .GE. 0, else LX = (-INCX)*N, and LY is
 defined in a similar way using INCY. The MP package by
 Richard P. Brent is used for the extended precision arithmetic.

 Fred T. Krogh, JPL, 1977, June 1

 The common block for the MP package is name MPCOM. If local
 variable I1 is zero, DQDOTA calls MPBLAS to initialize
 the MP package and reset I1 to 1.

 The argument QC(*) and the local variables QX and QY are INTEGER
 arrays of size 30. See the comments in the routine MPBLAS for the
 reason for this choice.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED MPADD, MPBLAS, MPCDM, MPCMD, MPMUL
 ***COMMON BLOCKS MPCOM
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN

SLATEC3 (DACOSH through DS2Y) - 557

 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 930124 Increased Array sizes for SUN -r8. (RWC)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 558

DQDOTI

 DOUBLE PRECISION FUNCTION DQDOTI (N, DB, QC, DX, INCX, DY, INCY)
 ***BEGIN PROLOGUE DQDOTI
 ***PURPOSE Compute the inner product of two vectors with extended
 precision accumulation and result.
 ***LIBRARY SLATEC
 ***CATEGORY D1A4
 ***TYPE DOUBLE PRECISION (DQDOTI-D)
 ***KEYWORDS DOT PRODUCT, INNER PRODUCT
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of parameters

 --Input--
 N number of elements in input vector(s)
 DB double precision scalar to be added to inner product
 QC extended precision scalar to be added
 DX double precision vector with N elements
 INCX storage spacing between elements of DX
 DY double precision vector with N elements
 INCY storage spacing between elements of DY

 --Output--
 DQDOTI double precision result
 QC extended precision result

 D.P. dot product with extended precision accumulation (and result)
 QC and DQDOTI are set = DB + sum for I = 0 to N-1 of
 DX(LX+I*INCX) * DY(LY+I*INCY), where QC is an extended
 precision result which can be used as input to DQDOTA,
 and LX = 1 if INCX .GE. 0, else LX = (-INCX)*N, and LY is
 defined in a similar way using INCY. The MP package by
 Richard P. Brent is used for the extended precision arithmetic.

 Fred T. Krogh, JPL, 1977, June 1

 The common block for the MP package is named MPCOM. If local
 variable I1 is zero, DQDOTI calls MPBLAS to initialize the MP
 package and reset I1 to 1.

 The argument QC(*), and the local variables QX and QY are INTEGER
 arrays of size 30. See the comments in the routine MPBLAS for the
 reason for this choice.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED MPADD, MPBLAS, MPCDM, MPCMD, MPMUL
 ***COMMON BLOCKS MPCOM
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN

SLATEC3 (DACOSH through DS2Y) - 559

 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 930124 Increased Array sizes for SUN -r8. (RWC)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 560

DQK15

 SUBROUTINE DQK15 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE DQK15
 ***PURPOSE To compute I = Integral of F over (A,B), with error
 estimate
 J = integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE DOUBLE PRECISION (QK15-S, DQK15-D)
 ***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 Declared E X T E R N A L in the calling program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I
 Result is computed by applying the 15-POINT
 KRONROD RULE (RESK) obtained by optimal addition
 of abscissae to the 7-POINT GAUSS RULE(RESG).

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should not exceed ABS(I-RESULT)

 RESABS - Double precision
 Approximation to the integral J

 RESASC - Double precision
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN

SLATEC3 (DACOSH through DS2Y) - 561

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 562

DQK15I

 SUBROUTINE DQK15I (F, BOUN, INF, A, B, RESULT, ABSERR, RESABS,
 + RESASC)
 ***BEGIN PROLOGUE DQK15I
 ***PURPOSE The original (infinite integration range is mapped
 onto the interval (0,1) and (A,B) is a part of (0,1).
 it is the purpose to compute
 I = Integral of transformed integrand over (A,B),
 J = Integral of ABS(Transformed Integrand) over (A,B).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A3A2, H2A4A2
 ***TYPE DOUBLE PRECISION (QK15I-S, DQK15I-D)
 ***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration Rule
 Standard Fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 Declared E X T E R N A L in the calling program.

 BOUN - Double precision
 Finite bound of original integration
 Range (SET TO ZERO IF INF = +2)

 INF - Integer
 If INF = -1, the original interval is
 (-INFINITY,BOUND),
 If INF = +1, the original interval is
 (BOUND,+INFINITY),
 If INF = +2, the original interval is
 (-INFINITY,+INFINITY) AND
 The integral is computed as the sum of two
 integrals, one over (-INFINITY,0) and one over
 (0,+INFINITY).

 A - Double precision
 Lower limit for integration over subrange
 of (0,1)

 B - Double precision
 Upper limit for integration over subrange
 of (0,1)

 ON RETURN
 RESULT - Double precision

SLATEC3 (DACOSH through DS2Y) - 563

 Approximation to the integral I
 Result is computed by applying the 15-POINT
 KRONROD RULE(RESK) obtained by optimal addition
 of abscissae to the 7-POINT GAUSS RULE(RESG).

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 WHICH SHOULD EQUAL or EXCEED ABS(I-RESULT)

 RESABS - Double precision
 Approximation to the integral J

 RESASC - Double precision
 Approximation to the integral of
 ABS((TRANSFORMED INTEGRAND)-I/(B-A)) over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 564

DQK15W

 SUBROUTINE DQK15W (F, W, P1, P2, P3, P4, KP, A, B, RESULT, ABSERR,
 + RESABS, RESASC)
 ***BEGIN PROLOGUE DQK15W
 ***PURPOSE To compute I = Integral of F*W over (A,B), with error
 estimate
 J = Integral of ABS(F*W) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A2
 ***TYPE DOUBLE PRECISION (QK15W-S, DQK15W-D)
 ***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the driver program.

 W - Double precision
 Function subprogram defining the integrand
 WEIGHT function W(X). The actual name for W
 needs to be declared E X T E R N A L in the
 calling program.

 P1, P2, P3, P4 - Double precision
 Parameters in the WEIGHT function

 KP - Integer
 Key for indicating the type of WEIGHT function

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I
 RESULT is computed by applying the 15-point
 Kronrod rule (RESK) obtained by optimal addition
 of abscissae to the 7-point Gauss rule (RESG).

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,

SLATEC3 (DACOSH through DS2Y) - 565

 which should equal or exceed ABS(I-RESULT)

 RESABS - Double precision
 Approximation to the integral of ABS(F)

 RESASC - Double precision
 Approximation to the integral of ABS(F-I/(B-A))

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 810101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 566

DQK21

 SUBROUTINE DQK21 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE DQK21
 ***PURPOSE To compute I = Integral of F over (A,B), with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE DOUBLE PRECISION (QK21-S, DQK21-D)
 ***KEYWORDS 21-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 Declared E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I
 RESULT is computed by applying the 21-POINT
 KRONROD RULE (RESK) obtained by optimal addition
 of abscissae to the 10-POINT GAUSS RULE (RESG).

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should not exceed ABS(I-RESULT)

 RESABS - Double precision
 Approximation to the integral J

 RESASC - Double precision
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN

SLATEC3 (DACOSH through DS2Y) - 567

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 568

DQK31

 SUBROUTINE DQK31 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE DQK31
 ***PURPOSE To compute I = Integral of F over (A,B) with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE DOUBLE PRECISION (QK31-S, DQK31-D)
 ***KEYWORDS 31-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 Declared E X T E R N A L in the calling program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I
 RESULT is computed by applying the 31-POINT
 GAUSS-KRONROD RULE (RESK), obtained by optimal
 addition of abscissae to the 15-POINT GAUSS
 RULE (RESG).

 ABSERR - Double precision
 Estimate of the modulus of the modulus,
 which should not exceed ABS(I-RESULT)

 RESABS - Double precision
 Approximation to the integral J

 RESASC - Double precision
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)

SLATEC3 (DACOSH through DS2Y) - 569

 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 570

DQK41

 SUBROUTINE DQK41 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE DQK41
 ***PURPOSE To compute I = Integral of F over (A,B), with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE DOUBLE PRECISION (QK41-S, DQK41-D)
 ***KEYWORDS 41-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 FUNCTION F(X). The actual name for F needs to be
 declared E X T E R N A L in the calling program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I
 RESULT is computed by applying the 41-POINT
 GAUSS-KRONROD RULE (RESK) obtained by optimal
 addition of abscissae to the 20-POINT GAUSS
 RULE (RESG).

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should not exceed ABS(I-RESULT)

 RESABS - Double precision
 Approximation to the integral J

 RESASC - Double precision
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)

SLATEC3 (DACOSH through DS2Y) - 571

 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 572

DQK51

 SUBROUTINE DQK51 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE DQK51
 ***PURPOSE To compute I = Integral of F over (A,B) with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE DOUBLE PRECISION (QK51-S, DQK51-D)
 ***KEYWORDS 51-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rules
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subroutine defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the calling program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I
 RESULT is computed by applying the 51-point
 Kronrod rule (RESK) obtained by optimal addition
 of abscissae to the 25-point Gauss rule (RESG).

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should not exceed ABS(I-RESULT)

 RESABS - Double precision
 Approximation to the integral J

 RESASC - Double precision
 Approximation to the integral of ABS(F-I/(B-A))
 over (A,B)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN

SLATEC3 (DACOSH through DS2Y) - 573

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 910819 Added WGK(26) to code. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 574

DQK61

 SUBROUTINE DQK61 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
 ***BEGIN PROLOGUE DQK61
 ***PURPOSE To compute I = Integral of F over (A,B) with error
 estimate
 J = Integral of ABS(F) over (A,B)
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A2
 ***TYPE DOUBLE PRECISION (QK61-S, DQK61-D)
 ***KEYWORDS 61-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 Integration rule
 Standard fortran subroutine
 Double precision version

 PARAMETERS
 ON ENTRY
 F - Double precision
 Function subprogram defining the integrand
 function F(X). The actual name for F needs to be
 declared E X T E R N A L in the calling program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I
 RESULT is computed by applying the 61-point
 Kronrod rule (RESK) obtained by optimal addition of
 abscissae to the 30-point Gauss rule (RESG).

 ABSERR - Double precision
 Estimate of the modulus of the absolute error,
 which should equal or exceed ABS(I-RESULT)

 RESABS - Double precision
 Approximation to the integral J

 RESASC - Double precision
 Approximation to the integral of ABS(F-I/(B-A))

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN

SLATEC3 (DACOSH through DS2Y) - 575

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 576

DQMOMO

 SUBROUTINE DQMOMO (ALFA, BETA, RI, RJ, RG, RH, INTEGR)
 ***BEGIN PROLOGUE DQMOMO
 ***PURPOSE This routine computes modified Chebyshev moments. The K-th
 modified Chebyshev moment is defined as the integral over
 (-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
 polynomial of degree K.
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A2A1, C3A2
 ***TYPE DOUBLE PRECISION (QMOMO-S, DQMOMO-D)
 ***KEYWORDS MODIFIED CHEBYSHEV MOMENTS, QUADPACK, QUADRATURE
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 MODIFIED CHEBYSHEV MOMENTS
 STANDARD FORTRAN SUBROUTINE
 DOUBLE PRECISION VERSION

 PARAMETERS
 ALFA - Double precision
 Parameter in the weight function W(X), ALFA.GT.(-1)

 BETA - Double precision
 Parameter in the weight function W(X), BETA.GT.(-1)

 RI - Double precision
 Vector of dimension 25
 RI(K) is the integral over (-1,1) of
 (1+X)**ALFA*T(K-1,X), K = 1, ..., 25.

 RJ - Double precision
 Vector of dimension 25
 RJ(K) is the integral over (-1,1) of
 (1-X)**BETA*T(K-1,X), K = 1, ..., 25.

 RG - Double precision
 Vector of dimension 25
 RG(K) is the integral over (-1,1) of
 (1+X)**ALFA*LOG((1+X)/2)*T(K-1,X), K = 1, ..., 25.

 RH - Double precision
 Vector of dimension 25
 RH(K) is the integral over (-1,1) of
 (1-X)**BETA*LOG((1-X)/2)*T(K-1,X), K = 1, ..., 25.

 INTEGR - Integer
 Input parameter indicating the modified
 Moments to be computed
 INTEGR = 1 compute RI, RJ
 = 2 compute RI, RJ, RG
 = 3 compute RI, RJ, RH
 = 4 compute RI, RJ, RG, RH

SLATEC3 (DACOSH through DS2Y) - 577

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 820101 DATE WRITTEN
 891009 Removed unreferenced statement label. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 578

DQNC79

 SUBROUTINE DQNC79 (FUN, A, B, ERR, ANS, IERR, K)
 ***BEGIN PROLOGUE DQNC79
 ***PURPOSE Integrate a function using a 7-point adaptive Newton-Cotes
 quadrature rule.
 ***LIBRARY SLATEC
 ***CATEGORY H2A1A1
 ***TYPE DOUBLE PRECISION (QNC79-S, DQNC79-D)
 ***KEYWORDS ADAPTIVE QUADRATURE, INTEGRATION, NEWTON-COTES
 ***AUTHOR Kahaner, D. K., (NBS)
 Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract *** a DOUBLE PRECISION routine ***
 DQNC79 is a general purpose program for evaluation of
 one dimensional integrals of user defined functions.
 DQNC79 will pick its own points for evaluation of the
 integrand and these will vary from problem to problem.
 Thus, DQNC79 is not designed to integrate over data sets.
 Moderately smooth integrands will be integrated efficiently
 and reliably. For problems with strong singularities,
 oscillations etc., the user may wish to use more sophis-
 ticated routines such as those in QUADPACK. One measure
 of the reliability of DQNC79 is the output parameter K,
 giving the number of integrand evaluations that were needed.

 Description of Arguments

 --Input--* FUN, A, B, ERR are DOUBLE PRECISION *
 FUN - name of external function to be integrated. This name
 must be in an EXTERNAL statement in your calling
 program. You must write a Fortran function to evaluate
 FUN. This should be of the form
 DOUBLE PRECISION FUNCTION FUN (X)
 C
 C X can vary from A to B
 C FUN(X) should be finite for all X on interval.
 C
 FUN = ...
 RETURN
 END
 A - lower limit of integration
 B - upper limit of integration (may be less than A)
 ERR - is a requested error tolerance. Normally, pick a value
 0 .LT. ERR .LT. 1.0D-8.

 --Output--
 ANS - computed value of the integral. Hopefully, ANS is
 accurate to within ERR * integral of ABS(FUN(X)).
 IERR - a status code
 - Normal codes
 1 ANS most likely meets requested error tolerance.
 -1 A equals B, or A and B are too nearly equal to
 allow normal integration. ANS is set to zero.
 - Abnormal code
 2 ANS probably does not meet requested error tolerance.
 K - the number of function evaluations actually used to do

SLATEC3 (DACOSH through DS2Y) - 579

 the integration. A value of K .GT. 1000 indicates a
 difficult problem; other programs may be more efficient.
 DQNC79 will gracefully give up if K exceeds 2000.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, I1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920218 Code redone to parallel QNC79. (WRB)
 930120 Increase array size 80->99, and KMX 2000->5000 for SUN -r8
 wordlength. (RWC)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 580

DQNG

 SUBROUTINE DQNG (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
 + IER)
 ***BEGIN PROLOGUE DQNG
 ***PURPOSE The routine calculates an approximation result to a
 given definite integral I = integral of F over (A,B),
 hopefully satisfying following claim for accuracy
 ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
 ***LIBRARY SLATEC (QUADPACK)
 ***CATEGORY H2A1A1
 ***TYPE DOUBLE PRECISION (QNG-S, DQNG-D)
 ***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD(PATTERSON) RULES,
 NONADAPTIVE, QUADPACK, QUADRATURE, SMOOTH INTEGRAND
 ***AUTHOR Piessens, Robert
 Applied Mathematics and Programming Division
 K. U. Leuven
 de Doncker, Elise
 Applied Mathematics and Programming Division
 K. U. Leuven
 ***DESCRIPTION

 NON-ADAPTIVE INTEGRATION
 STANDARD FORTRAN SUBROUTINE
 DOUBLE PRECISION VERSION

 F - Double precision
 Function subprogram defining the integrand function
 F(X). The actual name for F needs to be declared
 E X T E R N A L in the driver program.

 A - Double precision
 Lower limit of integration

 B - Double precision
 Upper limit of integration

 EPSABS - Double precision
 Absolute accuracy requested
 EPSREL - Double precision
 Relative accuracy requested
 If EPSABS.LE.0
 And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
 The routine will end with IER = 6.

 ON RETURN
 RESULT - Double precision
 Approximation to the integral I
 Result is obtained by applying the 21-POINT
 GAUSS-KRONROD RULE (RES21) obtained by optimal
 addition of abscissae to the 10-POINT GAUSS RULE
 (RES10), or by applying the 43-POINT RULE (RES43)
 obtained by optimal addition of abscissae to the
 21-POINT GAUSS-KRONROD RULE, or by applying the
 87-POINT RULE (RES87) obtained by optimal addition
 of abscissae to the 43-POINT RULE.

 ABSERR - Double precision

SLATEC3 (DACOSH through DS2Y) - 581

 Estimate of the modulus of the absolute error,
 which should EQUAL or EXCEED ABS(I-RESULT)

 NEVAL - Integer
 Number of integrand evaluations

 IER - IER = 0 normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.
 IER.GT.0 Abnormal termination of the routine. It is
 assumed that the requested accuracy has
 not been achieved.
 ERROR MESSAGES
 IER = 1 The maximum number of steps has been
 executed. The integral is probably too
 difficult to be calculated by DQNG.
 = 6 The input is invalid, because
 EPSABS.LE.0 AND
 EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
 RESULT, ABSERR and NEVAL are set to zero.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 582

DQRDC

 SUBROUTINE DQRDC (X, LDX, N, P, QRAUX, JPVT, WORK, JOB)
 ***BEGIN PROLOGUE DQRDC
 ***PURPOSE Use Householder transformations to compute the QR
 factorization of an N by P matrix. Column pivoting is a
 users option.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D5
 ***TYPE DOUBLE PRECISION (SQRDC-S, DQRDC-D, CQRDC-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, ORTHOGONAL TRIANGULAR,
 QR DECOMPOSITION
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 DQRDC uses Householder transformations to compute the QR
 factorization of an N by P matrix X. Column pivoting
 based on the 2-norms of the reduced columns may be
 performed at the user's option.

 On Entry

 X DOUBLE PRECISION(LDX,P), where LDX .GE. N.
 X contains the matrix whose decomposition is to be
 computed.

 LDX INTEGER.
 LDX is the leading dimension of the array X.

 N INTEGER.
 N is the number of rows of the matrix X.

 P INTEGER.
 P is the number of columns of the matrix X.

 JPVT INTEGER(P).
 JPVT contains integers that control the selection
 of the pivot columns. The K-th column X(K) of X
 is placed in one of three classes according to the
 value of JPVT(K).

 If JPVT(K) .GT. 0, then X(K) is an initial
 column.

 If JPVT(K) .EQ. 0, then X(K) is a free column.

 If JPVT(K) .LT. 0, then X(K) is a final column.

 Before the decomposition is computed, initial columns
 are moved to the beginning of the array X and final
 columns to the end. Both initial and final columns
 are frozen in place during the computation and only
 free columns are moved. At the K-th stage of the
 reduction, if X(K) is occupied by a free column
 it is interchanged with the free column of largest
 reduced norm. JPVT is not referenced if
 JOB .EQ. 0.

SLATEC3 (DACOSH through DS2Y) - 583

 WORK DOUBLE PRECISION(P).
 WORK is a work array. WORK is not referenced if
 JOB .EQ. 0.

 JOB INTEGER.
 JOB is an integer that initiates column pivoting.
 If JOB .EQ. 0, no pivoting is done.
 If JOB .NE. 0, pivoting is done.

 On Return

 X X contains in its upper triangle the upper
 triangular matrix R of the QR factorization.
 Below its diagonal X contains information from
 which the orthogonal part of the decomposition
 can be recovered. Note that if pivoting has
 been requested, the decomposition is not that
 of the original matrix X but that of X
 with its columns permuted as described by JPVT.

 QRAUX DOUBLE PRECISION(P).
 QRAUX contains further information required to recover
 the orthogonal part of the decomposition.

 JPVT JPVT(K) contains the index of the column of the
 original matrix that has been interchanged into
 the K-th column, if pivoting was requested.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DDOT, DNRM2, DSCAL, DSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 584

DQRSL

 SUBROUTINE DQRSL (X, LDX, N, K, QRAUX, Y, QY, QTY, B, RSD, XB,
 + JOB, INFO)
 ***BEGIN PROLOGUE DQRSL
 ***PURPOSE Apply the output of DQRDC to compute coordinate transfor-
 mations, projections, and least squares solutions.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D9, D2A1
 ***TYPE DOUBLE PRECISION (SQRSL-S, DQRSL-D, CQRSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, ORTHOGONAL TRIANGULAR,
 SOLVE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 DQRSL applies the output of DQRDC to compute coordinate
 transformations, projections, and least squares solutions.
 For K .LE. MIN(N,P), let XK be the matrix

 XK = (X(JPVT(1)),X(JPVT(2)), ... ,X(JPVT(K)))

 formed from columns JPVT(1), ... ,JPVT(K) of the original
 N X P matrix X that was input to DQRDC (if no pivoting was
 done, XK consists of the first K columns of X in their
 original order). DQRDC produces a factored orthogonal matrix Q
 and an upper triangular matrix R such that

 XK = Q * (R)
 (0)

 This information is contained in coded form in the arrays
 X and QRAUX.

 On Entry

 X DOUBLE PRECISION(LDX,P).
 X contains the output of DQRDC.

 LDX INTEGER.
 LDX is the leading dimension of the array X.

 N INTEGER.
 N is the number of rows of the matrix XK. It must
 have the same value as N in DQRDC.

 K INTEGER.
 K is the number of columns of the matrix XK. K
 must not be greater than MIN(N,P), where P is the
 same as in the calling sequence to DQRDC.

 QRAUX DOUBLE PRECISION(P).
 QRAUX contains the auxiliary output from DQRDC.

 Y DOUBLE PRECISION(N)
 Y contains an N-vector that is to be manipulated
 by DQRSL.

 JOB INTEGER.

SLATEC3 (DACOSH through DS2Y) - 585

 JOB specifies what is to be computed. JOB has
 the decimal expansion ABCDE, with the following
 meaning.

 If A .NE. 0, compute QY.
 If B,C,D, or E .NE. 0, compute QTY.
 If C .NE. 0, compute B.
 If D .NE. 0, compute RSD.
 If E .NE. 0, compute XB.

 Note that a request to compute B, RSD, or XB
 automatically triggers the computation of QTY, for
 which an array must be provided in the calling
 sequence.

 On Return

 QY DOUBLE PRECISION(N).
 QY contains Q*Y, if its computation has been
 requested.

 QTY DOUBLE PRECISION(N).
 QTY contains TRANS(Q)*Y, if its computation has
 been requested. Here TRANS(Q) is the
 transpose of the matrix Q.

 B DOUBLE PRECISION(K)
 B contains the solution of the least squares problem

 minimize norm2(Y - XK*B),

 if its computation has been requested. (Note that
 if pivoting was requested in DQRDC, the J-th
 component of B will be associated with column JPVT(J)
 of the original matrix X that was input into DQRDC.)

 RSD DOUBLE PRECISION(N).
 RSD contains the least squares residual Y - XK*B,
 if its computation has been requested. RSD is
 also the orthogonal projection of Y onto the
 orthogonal complement of the column space of XK.

 XB DOUBLE PRECISION(N).
 XB contains the least squares approximation XK*B,
 if its computation has been requested. XB is also
 the orthogonal projection of Y onto the column space
 of X.

 INFO INTEGER.
 INFO is zero unless the computation of B has
 been requested and R is exactly singular. In
 this case, INFO is the index of the first zero
 diagonal element of R and B is left unaltered.

 The parameters QY, QTY, B, RSD, and XB are not referenced
 if their computation is not requested and in this case
 can be replaced by dummy variables in the calling program.
 To save storage, the user may in some cases use the same
 array for different parameters in the calling sequence. A
 frequently occurring example is when one wishes to compute

SLATEC3 (DACOSH through DS2Y) - 586

 any of B, RSD, or XB and does not need Y or QTY. In this
 case one may identify Y, QTY, and one of B, RSD, or XB, while
 providing separate arrays for anything else that is to be
 computed. Thus the calling sequence

 CALL DQRSL(X,LDX,N,K,QRAUX,Y,DUM,Y,B,Y,DUM,110,INFO)

 will result in the computation of B and RSD, with RSD
 overwriting Y. More generally, each item in the following
 list contains groups of permissible identifications for
 a single calling sequence.

 1. (Y,QTY,B) (RSD) (XB) (QY)

 2. (Y,QTY,RSD) (B) (XB) (QY)

 3. (Y,QTY,XB) (B) (RSD) (QY)

 4. (Y,QY) (QTY,B) (RSD) (XB)

 5. (Y,QY) (QTY,RSD) (B) (XB)

 6. (Y,QY) (QTY,XB) (B) (RSD)

 In any group the value returned in the array allocated to
 the group corresponds to the last member of the group.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DAXPY, DCOPY, DDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 587

DRC

 DOUBLE PRECISION FUNCTION DRC (X, Y, IER)
 ***BEGIN PROLOGUE DRC
 ***PURPOSE Calculate a double precision approximation to
 DRC(X,Y) = Integral from zero to infinity of
 -1/2 -1
 (1/2)(t+X) (t+Y) dt,
 where X is nonnegative and Y is positive.
 ***LIBRARY SLATEC
 ***CATEGORY C14
 ***TYPE DOUBLE PRECISION (RC-S, DRC-D)
 ***KEYWORDS DUPLICATION THEOREM, ELEMENTARY FUNCTIONS,
 ELLIPTIC INTEGRAL, TAYLOR SERIES
 ***AUTHOR Carlson, B. C.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Notis, E. M.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Pexton, R. L.
 Lawrence Livermore National Laboratory
 Livermore, CA 94550
 ***DESCRIPTION

 1. DRC
 Standard FORTRAN function routine
 Double precision version
 The routine calculates an approximation result to
 DRC(X,Y) = integral from zero to infinity of

 -1/2 -1
 (1/2)(t+X) (t+Y) dt,

 where X is nonnegative and Y is positive. The duplication
 theorem is iterated until the variables are nearly equal,
 and the function is then expanded in Taylor series to fifth
 order. Logarithmic, inverse circular, and inverse hyper-
 bolic functions can be expressed in terms of DRC.

 2. Calling Sequence
 DRC(X, Y, IER)

 Parameters On Entry
 Values assigned by the calling routine

 X - Double precision, nonnegative variable

 Y - Double precision, positive variable

 On Return (values assigned by the DRC routine)

 DRC - Double precision approximation to the integral

SLATEC3 (DACOSH through DS2Y) - 588

 IER - Integer to indicate normal or abnormal termination.

 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.

 IER > 0 Abnormal termination of the routine

 X and Y are unaltered.

 3. Error messages

 Value of IER assigned by the DRC routine

 Value assigned Error message printed
 IER = 1 X.LT.0.0D0.OR.Y.LE.0.0D0
 = 2 X+Y.LT.LOLIM
 = 3 MAX(X,Y) .GT. UPLIM

 4. Control parameters

 Values of LOLIM, UPLIM, and ERRTOL are set by the
 routine.

 LOLIM and UPLIM determine the valid range of X and Y

 LOLIM - Lower limit of valid arguments

 Not less than 5 * (machine minimum) .

 UPLIM - Upper limit of valid arguments

 Not greater than (machine maximum) / 5 .

 Acceptable values for: LOLIM UPLIM
 IBM 360/370 SERIES : 3.0D-78 1.0D+75
 CDC 6000/7000 SERIES : 1.0D-292 1.0D+321
 UNIVAC 1100 SERIES : 1.0D-307 1.0D+307
 CRAY : 2.3D-2466 1.0D+2465
 VAX 11 SERIES : 1.5D-38 3.0D+37

 ERRTOL determines the accuracy of the answer

 The value assigned by the routine will result
 in solution precision within 1-2 decimals of
 "machine precision".

 ERRTOL - relative error due to truncation is less than
 16 * ERRTOL ** 6 / (1 - 2 * ERRTOL).

 The accuracy of the computed approximation to the inte-
 gral can be controlled by choosing the value of ERRTOL.
 Truncation of a Taylor series after terms of fifth order
 introduces an error less than the amount shown in the
 second column of the following table for each value of
 ERRTOL in the first column. In addition to the trunca-
 tion error there will be round-off error, but in prac-

SLATEC3 (DACOSH through DS2Y) - 589

 tice the total error from both sources is usually less
 than the amount given in the table.

 Sample choices: ERRTOL Relative truncation
 error less than
 1.0D-3 2.0D-17
 3.0D-3 2.0D-14
 1.0D-2 2.0D-11
 3.0D-2 2.0D-8
 1.0D-1 2.0D-5

 Decreasing ERRTOL by a factor of 10 yields six more
 decimal digits of accuracy at the expense of one or
 two more iterations of the duplication theorem.

 *Long Description:

 DRC special comments

 Check: DRC(X,X+Z) + DRC(Y,Y+Z) = DRC(0,Z)

 where X, Y, and Z are positive and X * Y = Z * Z

 On Input:

 X, and Y are the variables in the integral DRC(X,Y).

 On Output:

 X and Y are unaltered.

 DRC(0,1/4)=DRC(1/16,1/8)=PI=3.14159...

 DRC(9/4,2)=LN(2)

 **

 WARNING: Changes in the program may improve speed at the
 expense of robustness.

 --

 Special functions via DRC

 LN X X .GT. 0

SLATEC3 (DACOSH through DS2Y) - 590

 2
 LN(X) = (X-1) DRC(((1+X)/2) , X)

 --

 ARCSIN X -1 .LE. X .LE. 1

 2
 ARCSIN X = X DRC (1-X ,1)

 --

 ARCCOS X 0 .LE. X .LE. 1

 2 2
 ARCCOS X = SQRT(1-X) DRC(X ,1)

 --

 ARCTAN X -INF .LT. X .LT. +INF

 2
 ARCTAN X = X DRC(1,1+X)

 --

 ARCCOT X 0 .LE. X .LT. INF

 2 2
 ARCCOT X = DRC(X ,X +1)

 --

 ARCSINH X -INF .LT. X .LT. +INF

 2
 ARCSINH X = X DRC(1+X ,1)

 --

 ARCCOSH X X .GE. 1

 2 2
 ARCCOSH X = SQRT(X -1) DRC(X ,1)

 --

 ARCTANH X -1 .LT. X .LT. 1

 2
 ARCTANH X = X DRC(1,1-X)

 --

 ARCCOTH X X .GT. 1

 2 2
 ARCCOTH X = DRC(X ,X -1)

SLATEC3 (DACOSH through DS2Y) - 591

 --

 ***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
 elliptic integrals, ACM Transactions on Mathematical
 Software 7, 3 (September 1981), pp. 398-403.
 B. C. Carlson, Computing elliptic integrals by
 duplication, Numerische Mathematik 33, (1979),
 pp. 1-16.
 B. C. Carlson, Elliptic integrals of the first kind,
 SIAM Journal of Mathematical Analysis 8, (1977),
 pp. 231-242.
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Changed calls to XERMSG to standard form, and some
 editorial changes. (RWC))
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 592

DRC3JJ

 SUBROUTINE DRC3JJ (L2, L3, M2, M3, L1MIN, L1MAX, THRCOF, NDIM,
 + IER)
 ***BEGIN PROLOGUE DRC3JJ
 ***PURPOSE Evaluate the 3j symbol f(L1) = (L1 L2 L3)
 (-M2-M3 M2 M3)
 for all allowed values of L1, the other parameters
 being held fixed.
 ***LIBRARY SLATEC
 ***CATEGORY C19
 ***TYPE DOUBLE PRECISION (RC3JJ-S, DRC3JJ-D)
 ***KEYWORDS 3J COEFFICIENTS, 3J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
 RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
 WIGNER COEFFICIENTS
 ***AUTHOR Gordon, R. G., Harvard University
 Schulten, K., Max Planck Institute
 ***DESCRIPTION

 *Usage:

 DOUBLE PRECISION L2, L3, M2, M3, L1MIN, L1MAX, THRCOF(NDIM)
 INTEGER NDIM, IER

 CALL DRC3JJ (L2, L3, M2, M3, L1MIN, L1MAX, THRCOF, NDIM, IER)

 *Arguments:

 L2 :IN Parameter in 3j symbol.

 L3 :IN Parameter in 3j symbol.

 M2 :IN Parameter in 3j symbol.

 M3 :IN Parameter in 3j symbol.

 L1MIN :OUT Smallest allowable L1 in 3j symbol.

 L1MAX :OUT Largest allowable L1 in 3j symbol.

 THRCOF :OUT Set of 3j coefficients generated by evaluating the
 3j symbol for all allowed values of L1. THRCOF(I)
 will contain f(L1MIN+I-1), I=1,2,...,L1MAX+L1MIN+1.

 NDIM :IN Declared length of THRCOF in calling program.

 IER :OUT Error flag.
 IER=0 No errors.
 IER=1 Either L2.LT.ABS(M2) or L3.LT.ABS(M3).
 IER=2 Either L2+ABS(M2) or L3+ABS(M3) non-integer.
 IER=3 L1MAX-L1MIN not an integer.
 IER=4 L1MAX less than L1MIN.
 IER=5 NDIM less than L1MAX-L1MIN+1.

 *Description:

 Although conventionally the parameters of the vector addition
 coefficients satisfy certain restrictions, such as being integers

SLATEC3 (DACOSH through DS2Y) - 593

 or integers plus 1/2, the restrictions imposed on input to this
 subroutine are somewhat weaker. See, for example, Section 27.9 of
 Abramowitz and Stegun or Appendix C of Volume II of A. Messiah.
 The restrictions imposed by this subroutine are
 1. L2 .GE. ABS(M2) and L3 .GE. ABS(M3);
 2. L2+ABS(M2) and L3+ABS(M3) must be integers;
 3. L1MAX-L1MIN must be a non-negative integer, where
 L1MAX=L2+L3 and L1MIN=MAX(ABS(L2-L3),ABS(M2+M3)).
 If the conventional restrictions are satisfied, then these
 restrictions are met.

 The user should be cautious in using input parameters that do
 not satisfy the conventional restrictions. For example, the
 the subroutine produces values of
 f(L1) = (L1 2.5 5.8)
 (-0.3 1.5 -1.2)
 for L1=3.3,4.3,...,8.3 but none of the symmetry properties of the 3j
 symbol, set forth on page 1056 of Messiah, is satisfied.

 The subroutine generates f(L1MIN), f(L1MIN+1), ..., f(L1MAX)
 where L1MIN and L1MAX are defined above. The sequence f(L1) is
 generated by a three-term recurrence algorithm with scaling to
 control overflow. Both backward and forward recurrence are used to
 maintain numerical stability. The two recurrence sequences are
 matched at an interior point and are normalized from the unitary
 property of 3j coefficients and Wigner's phase convention.

 The algorithm is suited to applications in which large quantum
 numbers arise, such as in molecular dynamics.

 ***REFERENCES 1. Abramowitz, M., and Stegun, I. A., Eds., Handbook
 of Mathematical Functions with Formulas, Graphs
 and Mathematical Tables, NBS Applied Mathematics
 Series 55, June 1964 and subsequent printings.
 2. Messiah, Albert., Quantum Mechanics, Volume II,
 North-Holland Publishing Company, 1963.
 3. Schulten, Klaus and Gordon, Roy G., Exact recursive
 evaluation of 3j and 6j coefficients for quantum-
 mechanical coupling of angular momenta, J Math
 Phys, v 16, no. 10, October 1975, pp. 1961-1970.
 4. Schulten, Klaus and Gordon, Roy G., Semiclassical
 approximations to 3j and 6j coefficients for
 quantum-mechanical coupling of angular momenta,
 J Math Phys, v 16, no. 10, October 1975,
 pp. 1971-1988.
 5. Schulten, Klaus and Gordon, Roy G., Recursive
 evaluation of 3j and 6j coefficients, Computer
 Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 880515 SLATEC prologue added by G. C. Nielson, NBS; parameters
 HUGE and TINY revised to depend on D1MACH.
 891229 Prologue description rewritten; other prologue sections
 revised; LMATCH (location of match point for recurrences)
 removed from argument list; argument IER changed to serve
 only as an error flag (previously, in cases without error,
 it returned the number of scalings); number of error codes
 increased to provide more precise error information;
 program comments revised; SLATEC error handler calls

SLATEC3 (DACOSH through DS2Y) - 594

 introduced to enable printing of error messages to meet
 SLATEC standards. These changes were done by D. W. Lozier,
 M. A. McClain and J. M. Smith of the National Institute
 of Standards and Technology, formerly NBS.
 910415 Mixed type expressions eliminated; variable C1 initialized;
 description of THRCOF expanded. These changes were done by
 D. W. Lozier.
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 595

DRC3JM

 SUBROUTINE DRC3JM (L1, L2, L3, M1, M2MIN, M2MAX, THRCOF, NDIM,
 + IER)
 ***BEGIN PROLOGUE DRC3JM
 ***PURPOSE Evaluate the 3j symbol g(M2) = (L1 L2 L3)
 (M1 M2 -M1-M2)
 for all allowed values of M2, the other parameters
 being held fixed.
 ***LIBRARY SLATEC
 ***CATEGORY C19
 ***TYPE DOUBLE PRECISION (RC3JM-S, DRC3JM-D)
 ***KEYWORDS 3J COEFFICIENTS, 3J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
 RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
 WIGNER COEFFICIENTS
 ***AUTHOR Gordon, R. G., Harvard University
 Schulten, K., Max Planck Institute
 ***DESCRIPTION

 *Usage:

 DOUBLE PRECISION L1, L2, L3, M1, M2MIN, M2MAX, THRCOF(NDIM)
 INTEGER NDIM, IER

 CALL DRC3JM (L1, L2, L3, M1, M2MIN, M2MAX, THRCOF, NDIM, IER)

 *Arguments:

 L1 :IN Parameter in 3j symbol.

 L2 :IN Parameter in 3j symbol.

 L3 :IN Parameter in 3j symbol.

 M1 :IN Parameter in 3j symbol.

 M2MIN :OUT Smallest allowable M2 in 3j symbol.

 M2MAX :OUT Largest allowable M2 in 3j symbol.

 THRCOF :OUT Set of 3j coefficients generated by evaluating the
 3j symbol for all allowed values of M2. THRCOF(I)
 will contain g(M2MIN+I-1), I=1,2,...,M2MAX-M2MIN+1.

 NDIM :IN Declared length of THRCOF in calling program.

 IER :OUT Error flag.
 IER=0 No errors.
 IER=1 Either L1.LT.ABS(M1) or L1+ABS(M1) non-integer.
 IER=2 ABS(L1-L2).LE.L3.LE.L1+L2 not satisfied.
 IER=3 L1+L2+L3 not an integer.
 IER=4 M2MAX-M2MIN not an integer.
 IER=5 M2MAX less than M2MIN.
 IER=6 NDIM less than M2MAX-M2MIN+1.

 *Description:

 Although conventionally the parameters of the vector addition

SLATEC3 (DACOSH through DS2Y) - 596

 coefficients satisfy certain restrictions, such as being integers
 or integers plus 1/2, the restrictions imposed on input to this
 subroutine are somewhat weaker. See, for example, Section 27.9 of
 Abramowitz and Stegun or Appendix C of Volume II of A. Messiah.
 The restrictions imposed by this subroutine are
 1. L1.GE.ABS(M1) and L1+ABS(M1) must be an integer;
 2. ABS(L1-L2).LE.L3.LE.L1+L2;
 3. L1+L2+L3 must be an integer;
 4. M2MAX-M2MIN must be an integer, where
 M2MAX=MIN(L2,L3-M1) and M2MIN=MAX(-L2,-L3-M1).
 If the conventional restrictions are satisfied, then these
 restrictions are met.

 The user should be cautious in using input parameters that do
 not satisfy the conventional restrictions. For example, the
 the subroutine produces values of
 g(M2) = (0.75 1.50 1.75)
 (0.25 M2 -0.25-M2)
 for M2=-1.5,-0.5,0.5,1.5 but none of the symmetry properties of the
 3j symbol, set forth on page 1056 of Messiah, is satisfied.

 The subroutine generates g(M2MIN), g(M2MIN+1), ..., g(M2MAX)
 where M2MIN and M2MAX are defined above. The sequence g(M2) is
 generated by a three-term recurrence algorithm with scaling to
 control overflow. Both backward and forward recurrence are used to
 maintain numerical stability. The two recurrence sequences are
 matched at an interior point and are normalized from the unitary
 property of 3j coefficients and Wigner's phase convention.

 The algorithm is suited to applications in which large quantum
 numbers arise, such as in molecular dynamics.

 ***REFERENCES 1. Abramowitz, M., and Stegun, I. A., Eds., Handbook
 of Mathematical Functions with Formulas, Graphs
 and Mathematical Tables, NBS Applied Mathematics
 Series 55, June 1964 and subsequent printings.
 2. Messiah, Albert., Quantum Mechanics, Volume II,
 North-Holland Publishing Company, 1963.
 3. Schulten, Klaus and Gordon, Roy G., Exact recursive
 evaluation of 3j and 6j coefficients for quantum-
 mechanical coupling of angular momenta, J Math
 Phys, v 16, no. 10, October 1975, pp. 1961-1970.
 4. Schulten, Klaus and Gordon, Roy G., Semiclassical
 approximations to 3j and 6j coefficients for
 quantum-mechanical coupling of angular momenta,
 J Math Phys, v 16, no. 10, October 1975,
 pp. 1971-1988.
 5. Schulten, Klaus and Gordon, Roy G., Recursive
 evaluation of 3j and 6j coefficients, Computer
 Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 880515 SLATEC prologue added by G. C. Nielson, NBS; parameters
 HUGE and TINY revised to depend on D1MACH.
 891229 Prologue description rewritten; other prologue sections
 revised; MMATCH (location of match point for recurrences)
 removed from argument list; argument IER changed to serve
 only as an error flag (previously, in cases without error,
 it returned the number of scalings); number of error codes

SLATEC3 (DACOSH through DS2Y) - 597

 increased to provide more precise error information;
 program comments revised; SLATEC error handler calls
 introduced to enable printing of error messages to meet
 SLATEC standards. These changes were done by D. W. Lozier,
 M. A. McClain and J. M. Smith of the National Institute
 of Standards and Technology, formerly NBS.
 910415 Mixed type expressions eliminated; variable C1 initialized;
 description of THRCOF expanded. These changes were done by
 D. W. Lozier.
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 598

DRC6J

 SUBROUTINE DRC6J(L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF, NDIM,
 + IER)
 ***BEGIN PROLOGUE DRC6J
 ***PURPOSE Evaluate the 6j symbol h(L1) = {L1 L2 L3}
 {L4 L5 L6}
 for all allowed values of L1, the other parameters
 being held fixed.
 ***LIBRARY SLATEC
 ***CATEGORY C19
 ***TYPE DOUBLE PRECISION (RC6J-S, DRC6J-D)
 ***KEYWORDS 6J COEFFICIENTS, 6J SYMBOLS, CLEBSCH-GORDAN COEFFICIENTS,
 RACAH COEFFICIENTS, VECTOR ADDITION COEFFICIENTS,
 WIGNER COEFFICIENTS
 ***AUTHOR Gordon, R. G., Harvard University
 Schulten, K., Max Planck Institute
 ***DESCRIPTION

 *Usage:

 DOUBLE PRECISION L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF(NDIM)
 INTEGER NDIM, IER

 CALL DRC6J(L2, L3, L4, L5, L6, L1MIN, L1MAX, SIXCOF, NDIM, IER)

 *Arguments:

 L2 :IN Parameter in 6j symbol.

 L3 :IN Parameter in 6j symbol.

 L4 :IN Parameter in 6j symbol.

 L5 :IN Parameter in 6j symbol.

 L6 :IN Parameter in 6j symbol.

 L1MIN :OUT Smallest allowable L1 in 6j symbol.

 L1MAX :OUT Largest allowable L1 in 6j symbol.

 SIXCOF :OUT Set of 6j coefficients generated by evaluating the
 6j symbol for all allowed values of L1. SIXCOF(I)
 will contain h(L1MIN+I-1), I=1,2,...,L1MAX-L1MIN+1.

 NDIM :IN Declared length of SIXCOF in calling program.

 IER :OUT Error flag.
 IER=0 No errors.
 IER=1 L2+L3+L5+L6 or L4+L2+L6 not an integer.
 IER=2 L4, L2, L6 triangular condition not satisfied.
 IER=3 L4, L5, L3 triangular condition not satisfied.
 IER=4 L1MAX-L1MIN not an integer.
 IER=5 L1MAX less than L1MIN.
 IER=6 NDIM less than L1MAX-L1MIN+1.

 *Description:

SLATEC3 (DACOSH through DS2Y) - 599

 The definition and properties of 6j symbols can be found, for
 example, in Appendix C of Volume II of A. Messiah. Although the
 parameters of the vector addition coefficients satisfy certain
 conventional restrictions, the restriction that they be non-negative
 integers or non-negative integers plus 1/2 is not imposed on input
 to this subroutine. The restrictions imposed are
 1. L2+L3+L5+L6 and L2+L4+L6 must be integers;
 2. ABS(L2-L4).LE.L6.LE.L2+L4 must be satisfied;
 3. ABS(L4-L5).LE.L3.LE.L4+L5 must be satisfied;
 4. L1MAX-L1MIN must be a non-negative integer, where
 L1MAX=MIN(L2+L3,L5+L6) and L1MIN=MAX(ABS(L2-L3),ABS(L5-L6)).
 If all the conventional restrictions are satisfied, then these
 restrictions are met. Conversely, if input to this subroutine meets
 all of these restrictions and the conventional restriction stated
 above, then all the conventional restrictions are satisfied.

 The user should be cautious in using input parameters that do
 not satisfy the conventional restrictions. For example, the
 the subroutine produces values of
 h(L1) = { L1 2/3 1 }
 {2/3 2/3 2/3}
 for L1=1/3 and 4/3 but none of the symmetry properties of the 6j
 symbol, set forth on pages 1063 and 1064 of Messiah, is satisfied.

 The subroutine generates h(L1MIN), h(L1MIN+1), ..., h(L1MAX)
 where L1MIN and L1MAX are defined above. The sequence h(L1) is
 generated by a three-term recurrence algorithm with scaling to
 control overflow. Both backward and forward recurrence are used to
 maintain numerical stability. The two recurrence sequences are
 matched at an interior point and are normalized from the unitary
 property of 6j coefficients and Wigner's phase convention.

 The algorithm is suited to applications in which large quantum
 numbers arise, such as in molecular dynamics.

 ***REFERENCES 1. Messiah, Albert., Quantum Mechanics, Volume II,
 North-Holland Publishing Company, 1963.
 2. Schulten, Klaus and Gordon, Roy G., Exact recursive
 evaluation of 3j and 6j coefficients for quantum-
 mechanical coupling of angular momenta, J Math
 Phys, v 16, no. 10, October 1975, pp. 1961-1970.
 3. Schulten, Klaus and Gordon, Roy G., Semiclassical
 approximations to 3j and 6j coefficients for
 quantum-mechanical coupling of angular momenta,
 J Math Phys, v 16, no. 10, October 1975,
 pp. 1971-1988.
 4. Schulten, Klaus and Gordon, Roy G., Recursive
 evaluation of 3j and 6j coefficients, Computer
 Phys Comm, v 11, 1976, pp. 269-278.
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 880515 SLATEC prologue added by G. C. Nielson, NBS; parameters
 HUGE and TINY revised to depend on D1MACH.
 891229 Prologue description rewritten; other prologue sections
 revised; LMATCH (location of match point for recurrences)
 removed from argument list; argument IER changed to serve
 only as an error flag (previously, in cases without error,
 it returned the number of scalings); number of error codes

SLATEC3 (DACOSH through DS2Y) - 600

 increased to provide more precise error information;
 program comments revised; SLATEC error handler calls
 introduced to enable printing of error messages to meet
 SLATEC standards. These changes were done by D. W. Lozier,
 M. A. McClain and J. M. Smith of the National Institute
 of Standards and Technology, formerly NBS.
 910415 Mixed type expressions eliminated; variable C1 initialized;
 description of SIXCOF expanded. These changes were done by
 D. W. Lozier.
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 601

DRD

 DOUBLE PRECISION FUNCTION DRD (X, Y, Z, IER)
 ***BEGIN PROLOGUE DRD
 ***PURPOSE Compute the incomplete or complete elliptic integral of
 the 2nd kind. For X and Y nonnegative, X+Y and Z positive,
 DRD(X,Y,Z) = Integral from zero to infinity of
 -1/2 -1/2 -3/2
 (3/2)(t+X) (t+Y) (t+Z) dt.
 If X or Y is zero, the integral is complete.
 ***LIBRARY SLATEC
 ***CATEGORY C14
 ***TYPE DOUBLE PRECISION (RD-S, DRD-D)
 ***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
 INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE SECOND KIND,
 TAYLOR SERIES
 ***AUTHOR Carlson, B. C.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Notis, E. M.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Pexton, R. L.
 Lawrence Livermore National Laboratory
 Livermore, CA 94550
 ***DESCRIPTION

 1. DRD
 Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
 of the second kind
 Standard FORTRAN function routine
 Double precision version
 The routine calculates an approximation result to
 DRD(X,Y,Z) = Integral from zero to infinity of
 -1/2 -1/2 -3/2
 (3/2)(t+X) (t+Y) (t+Z) dt,
 where X and Y are nonnegative, X + Y is positive, and Z is
 positive. If X or Y is zero, the integral is COMPLETE.
 The duplication theorem is iterated until the variables are
 nearly equal, and the function is then expanded in Taylor
 series to fifth order.

 2. Calling Sequence

 DRD(X, Y, Z, IER)

 Parameters On Entry
 Values assigned by the calling routine

 X - Double precision, nonnegative variable

 Y - Double precision, nonnegative variable

 X + Y is positive

 Z - Double precision, positive variable

SLATEC3 (DACOSH through DS2Y) - 602

 On Return (values assigned by the DRD routine)

 DRD - Double precision approximation to the integral

 IER - Integer

 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.

 IER > 0 Abnormal termination of the routine

 X, Y, Z are unaltered.

 3. Error Messages

 Value of IER assigned by the DRD routine

 Value assigned Error message printed
 IER = 1 MIN(X,Y) .LT. 0.0D0
 = 2 MIN(X + Y, Z) .LT. LOLIM
 = 3 MAX(X,Y,Z) .GT. UPLIM

 4. Control Parameters

 Values of LOLIM, UPLIM, and ERRTOL are set by the
 routine.

 LOLIM and UPLIM determine the valid range of X, Y, and Z

 LOLIM - Lower limit of valid arguments

 Not less than 2 / (machine maximum) ** (2/3).

 UPLIM - Upper limit of valid arguments

 Not greater than (0.1D0 * ERRTOL / machine
 minimum) ** (2/3), where ERRTOL is described below.
 In the following table it is assumed that ERRTOL will
 never be chosen smaller than 1.0D-5.

 Acceptable values for: LOLIM UPLIM
 IBM 360/370 SERIES : 6.0D-51 1.0D+48
 CDC 6000/7000 SERIES : 5.0D-215 2.0D+191
 UNIVAC 1100 SERIES : 1.0D-205 2.0D+201
 CRAY : 3.0D-1644 1.69D+1640
 VAX 11 SERIES : 1.0D-25 4.5D+21

 ERRTOL determines the accuracy of the answer

 The value assigned by the routine will result
 in solution precision within 1-2 decimals of

SLATEC3 (DACOSH through DS2Y) - 603

 "machine precision".

 ERRTOL Relative error due to truncation is less than
 3 * ERRTOL ** 6 / (1-ERRTOL) ** 3/2.

 The accuracy of the computed approximation to the integral
 can be controlled by choosing the value of ERRTOL.
 Truncation of a Taylor series after terms of fifth order
 introduces an error less than the amount shown in the
 second column of the following table for each value of
 ERRTOL in the first column. In addition to the truncation
 error there will be round-off error, but in practice the
 total error from both sources is usually less than the
 amount given in the table.

 Sample choices: ERRTOL Relative truncation
 error less than
 1.0D-3 4.0D-18
 3.0D-3 3.0D-15
 1.0D-2 4.0D-12
 3.0D-2 3.0D-9
 1.0D-1 4.0D-6

 Decreasing ERRTOL by a factor of 10 yields six more
 decimal digits of accuracy at the expense of one or
 two more iterations of the duplication theorem.

 *Long Description:

 DRD Special Comments

 Check: DRD(X,Y,Z) + DRD(Y,Z,X) + DRD(Z,X,Y)
 = 3 / SQRT(X * Y * Z), where X, Y, and Z are positive.

 On Input:

 X, Y, and Z are the variables in the integral DRD(X,Y,Z).

 On Output:

 X, Y, Z are unaltered.

 **

 WARNING: Changes in the program may improve speed at the
 expense of robustness.

SLATEC3 (DACOSH through DS2Y) - 604

 Special double precision functions via DRD and DRF

 Legendre form of ELLIPTIC INTEGRAL of 2nd kind

 2 2 2
 E(PHI,K) = SIN(PHI) DRF(COS (PHI),1-K SIN (PHI),1) -

 2 3 2 2 2
 -(K/3) SIN (PHI) DRD(COS (PHI),1-K SIN (PHI),1)

 2 2 2
 E(K) = DRF(0,1-K ,1) - (K/3) DRD(0,1-K ,1)

 PI/2 2 2 1/2
 = INT (1-K SIN (PHI)) D PHI
 0

 Bulirsch form of ELLIPTIC INTEGRAL of 2nd kind

 2 2 2
 EL2(X,KC,A,B) = AX DRF(1,1+KC X ,1+X) +

 3 2 2 2
 +(1/3)(B-A) X DRD(1,1+KC X ,1+X)

 Legendre form of alternative ELLIPTIC INTEGRAL
 of 2nd kind

 Q 2 2 2 -1/2
 D(Q,K) = INT SIN P (1-K SIN P) DP
 0

 3 2 2 2
 D(Q,K) = (1/3) (SIN Q) DRD(COS Q,1-K SIN Q,1)

 Lemniscate constant B

SLATEC3 (DACOSH through DS2Y) - 605

 1 2 4 -1/2
 B = INT S (1-S) DS
 0

 B = (1/3) DRD (0,2,1)

 Heuman's LAMBDA function

 (PI/2) LAMBDA0(A,B) =

 2 2
 = SIN(B) (DRF(0,COS (A),1)-(1/3) SIN (A) *

 2 2 2 2
 *DRD(0,COS (A),1)) DRF(COS (B),1-COS (A) SIN (B),1)

 2 3 2
 -(1/3) COS (A) SIN (B) DRF(0,COS (A),1) *

 2 2 2
 *DRD(COS (B),1-COS (A) SIN (B),1)

 Jacobi ZETA function

 2 2 2 2
 Z(B,K) = (K/3) SIN(B) DRF(COS (B),1-K SIN (B),1)

 2 2
 *DRD(0,1-K ,1)/DRF(0,1-K ,1)

 2 3 2 2 2
 -(K /3) SIN (B) DRD(COS (B),1-K SIN (B),1)

 ***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
 elliptic integrals, ACM Transactions on Mathematical
 Software 7, 3 (September 1981), pp. 398-403.
 B. C. Carlson, Computing elliptic integrals by
 duplication, Numerische Mathematik 33, (1979),
 pp. 1-16.
 B. C. Carlson, Elliptic integrals of the first kind,

SLATEC3 (DACOSH through DS2Y) - 606

 SIAM Journal of Mathematical Analysis 8, (1977),
 pp. 231-242.
 ***ROUTINES CALLED D1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Modify calls to XERMSG to put in standard form. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 607

DRF

 DOUBLE PRECISION FUNCTION DRF (X, Y, Z, IER)
 ***BEGIN PROLOGUE DRF
 ***PURPOSE Compute the incomplete or complete elliptic integral of the
 1st kind. For X, Y, and Z non-negative and at most one of
 them zero, RF(X,Y,Z) = Integral from zero to infinity of
 -1/2 -1/2 -1/2
 (1/2)(t+X) (t+Y) (t+Z) dt.
 If X, Y or Z is zero, the integral is complete.
 ***LIBRARY SLATEC
 ***CATEGORY C14
 ***TYPE DOUBLE PRECISION (RF-S, DRF-D)
 ***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
 INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE FIRST KIND,
 TAYLOR SERIES
 ***AUTHOR Carlson, B. C.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Notis, E. M.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Pexton, R. L.
 Lawrence Livermore National Laboratory
 Livermore, CA 94550
 ***DESCRIPTION

 1. DRF
 Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
 of the first kind
 Standard FORTRAN function routine
 Double precision version
 The routine calculates an approximation result to
 DRF(X,Y,Z) = Integral from zero to infinity of

 -1/2 -1/2 -1/2
 (1/2)(t+X) (t+Y) (t+Z) dt,

 where X, Y, and Z are nonnegative and at most one of them
 is zero. If one of them is zero, the integral is COMPLETE.
 The duplication theorem is iterated until the variables are
 nearly equal, and the function is then expanded in Taylor
 series to fifth order.

 2. Calling sequence
 DRF(X, Y, Z, IER)

 Parameters On entry
 Values assigned by the calling routine

 X - Double precision, nonnegative variable

 Y - Double precision, nonnegative variable

 Z - Double precision, nonnegative variable

SLATEC3 (DACOSH through DS2Y) - 608

 On Return (values assigned by the DRF routine)

 DRF - Double precision approximation to the integral

 IER - Integer

 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.

 IER > 0 Abnormal termination of the routine

 X, Y, Z are unaltered.

 3. Error Messages

 Value of IER assigned by the DRF routine

 Value assigned Error Message Printed
 IER = 1 MIN(X,Y,Z) .LT. 0.0D0
 = 2 MIN(X+Y,X+Z,Y+Z) .LT. LOLIM
 = 3 MAX(X,Y,Z) .GT. UPLIM

 4. Control Parameters

 Values of LOLIM, UPLIM, and ERRTOL are set by the
 routine.

 LOLIM and UPLIM determine the valid range of X, Y and Z

 LOLIM - Lower limit of valid arguments

 Not less than 5 * (machine minimum).

 UPLIM - Upper limit of valid arguments

 Not greater than (machine maximum) / 5.

 Acceptable values for: LOLIM UPLIM
 IBM 360/370 SERIES : 3.0D-78 1.0D+75
 CDC 6000/7000 SERIES : 1.0D-292 1.0D+321
 UNIVAC 1100 SERIES : 1.0D-307 1.0D+307
 CRAY : 2.3D-2466 1.09D+2465
 VAX 11 SERIES : 1.5D-38 3.0D+37

 ERRTOL determines the accuracy of the answer

 The value assigned by the routine will result
 in solution precision within 1-2 decimals of
 "machine precision".

SLATEC3 (DACOSH through DS2Y) - 609

 ERRTOL - Relative error due to truncation is less than
 ERRTOL ** 6 / (4 * (1-ERRTOL) .

 The accuracy of the computed approximation to the integral
 can be controlled by choosing the value of ERRTOL.
 Truncation of a Taylor series after terms of fifth order
 introduces an error less than the amount shown in the
 second column of the following table for each value of
 ERRTOL in the first column. In addition to the truncation
 error there will be round-off error, but in practice the
 total error from both sources is usually less than the
 amount given in the table.

 Sample choices: ERRTOL Relative Truncation
 error less than
 1.0D-3 3.0D-19
 3.0D-3 2.0D-16
 1.0D-2 3.0D-13
 3.0D-2 2.0D-10
 1.0D-1 3.0D-7

 Decreasing ERRTOL by a factor of 10 yields six more
 decimal digits of accuracy at the expense of one or
 two more iterations of the duplication theorem.

 *Long Description:

 DRF Special Comments

 Check by addition theorem: DRF(X,X+Z,X+W) + DRF(Y,Y+Z,Y+W)
 = DRF(0,Z,W), where X,Y,Z,W are positive and X * Y = Z * W.

 On Input:

 X, Y, and Z are the variables in the integral DRF(X,Y,Z).

 On Output:

 X, Y, Z are unaltered.

 **

 WARNING: Changes in the program may improve speed at the
 expense of robustness.

SLATEC3 (DACOSH through DS2Y) - 610

 Special double precision functions via DRF

 Legendre form of ELLIPTIC INTEGRAL of 1st kind

 2 2 2
 F(PHI,K) = SIN(PHI) DRF(COS (PHI),1-K SIN (PHI),1)

 2
 K(K) = DRF(0,1-K ,1)

 PI/2 2 2 -1/2
 = INT (1-K SIN (PHI)) D PHI
 0

 Bulirsch form of ELLIPTIC INTEGRAL of 1st kind

 2 2 2
 EL1(X,KC) = X DRF(1,1+KC X ,1+X)

 Lemniscate constant A

 1 4 -1/2
 A = INT (1-S) DS = DRF(0,1,2) = DRF(0,2,1)
 0

 ***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
 elliptic integrals, ACM Transactions on Mathematical
 Software 7, 3 (September 1981), pp. 398-403.
 B. C. Carlson, Computing elliptic integrals by
 duplication, Numerische Mathematik 33, (1979),
 pp. 1-16.
 B. C. Carlson, Elliptic integrals of the first kind,
 SIAM Journal of Mathematical Analysis 8, (1977),
 pp. 231-242.
 ***ROUTINES CALLED D1MACH, XERMSG

SLATEC3 (DACOSH through DS2Y) - 611

 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Changed calls to XERMSG to standard form, and some
 editorial changes. (RWC))
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 612

DRJ

 DOUBLE PRECISION FUNCTION DRJ (X, Y, Z, P, IER)
 ***BEGIN PROLOGUE DRJ
 ***PURPOSE Compute the incomplete or complete (X or Y or Z is zero)
 elliptic integral of the 3rd kind. For X, Y, and Z non-
 negative, at most one of them zero, and P positive,
 RJ(X,Y,Z,P) = Integral from zero to infinity of
 -1/2 -1/2 -1/2 -1
 (3/2)(t+X) (t+Y) (t+Z) (t+P) dt.
 ***LIBRARY SLATEC
 ***CATEGORY C14
 ***TYPE DOUBLE PRECISION (RJ-S, DRJ-D)
 ***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
 INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE THIRD KIND,
 TAYLOR SERIES
 ***AUTHOR Carlson, B. C.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Notis, E. M.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Pexton, R. L.
 Lawrence Livermore National Laboratory
 Livermore, CA 94550
 ***DESCRIPTION

 1. DRJ
 Standard FORTRAN function routine
 Double precision version
 The routine calculates an approximation result to
 DRJ(X,Y,Z,P) = Integral from zero to infinity of

 -1/2 -1/2 -1/2 -1
 (3/2)(t+X) (t+Y) (t+Z) (t+P) dt,

 where X, Y, and Z are nonnegative, at most one of them is
 zero, and P is positive. If X or Y or Z is zero, the
 integral is COMPLETE. The duplication theorem is iterated
 until the variables are nearly equal, and the function is
 then expanded in Taylor series to fifth order.

 2. Calling Sequence
 DRJ(X, Y, Z, P, IER)

 Parameters on Entry
 Values assigned by the calling routine

 X - Double precision, nonnegative variable

 Y - Double precision, nonnegative variable

 Z - Double precision, nonnegative variable

 P - Double precision, positive variable

SLATEC3 (DACOSH through DS2Y) - 613

 On Return (values assigned by the DRJ routine)

 DRJ - Double precision approximation to the integral

 IER - Integer

 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.

 IER > 0 Abnormal termination of the routine

 X, Y, Z, P are unaltered.

 3. Error Messages

 Value of IER assigned by the DRJ routine

 Value assigned Error Message printed
 IER = 1 MIN(X,Y,Z) .LT. 0.0D0
 = 2 MIN(X+Y,X+Z,Y+Z,P) .LT. LOLIM
 = 3 MAX(X,Y,Z,P) .GT. UPLIM

 4. Control Parameters

 Values of LOLIM, UPLIM, and ERRTOL are set by the
 routine.

 LOLIM and UPLIM determine the valid range of X, Y, Z, and P

 LOLIM is not less than the cube root of the value
 of LOLIM used in the routine for DRC.

 UPLIM is not greater than 0.3 times the cube root of
 the value of UPLIM used in the routine for DRC.

 Acceptable values for: LOLIM UPLIM
 IBM 360/370 SERIES : 2.0D-26 3.0D+24
 CDC 6000/7000 SERIES : 5.0D-98 3.0D+106
 UNIVAC 1100 SERIES : 5.0D-103 6.0D+101
 CRAY : 1.32D-822 1.4D+821
 VAX 11 SERIES : 2.5D-13 9.0D+11

 ERRTOL determines the accuracy of the answer

 the value assigned by the routine will result
 in solution precision within 1-2 decimals of
 "machine precision".

SLATEC3 (DACOSH through DS2Y) - 614

 Relative error due to truncation of the series for DRJ
 is less than 3 * ERRTOL ** 6 / (1 - ERRTOL) ** 3/2.

 The accuracy of the computed approximation to the integral
 can be controlled by choosing the value of ERRTOL.
 Truncation of a Taylor series after terms of fifth order
 introduces an error less than the amount shown in the
 second column of the following table for each value of
 ERRTOL in the first column. In addition to the truncation
 error there will be round-off error, but in practice the
 total error from both sources is usually less than the
 amount given in the table.

 Sample choices: ERRTOL Relative truncation
 error less than
 1.0D-3 4.0D-18
 3.0D-3 3.0D-15
 1.0D-2 4.0D-12
 3.0D-2 3.0D-9
 1.0D-1 4.0D-6

 Decreasing ERRTOL by a factor of 10 yields six more
 decimal digits of accuracy at the expense of one or
 two more iterations of the duplication theorem.

 *Long Description:

 DRJ Special Comments

 Check by addition theorem: DRJ(X,X+Z,X+W,X+P)
 + DRJ(Y,Y+Z,Y+W,Y+P) + (A-B) * DRJ(A,B,B,A) + 3.0D0 / SQRT(A)
 = DRJ(0,Z,W,P), where X,Y,Z,W,P are positive and X * Y
 = Z * W, A = P * P * (X+Y+Z+W), B = P * (P+X) * (P+Y),
 and B - A = P * (P-Z) * (P-W). The sum of the third and
 fourth terms on the left side is 3.0D0 * DRC(A,B).

 On Input:

 X, Y, Z, and P are the variables in the integral DRJ(X,Y,Z,P).

 On Output:

 X, Y, Z, P are unaltered.

 **

 WARNING: Changes in the program may improve speed at the
 expense of robustness.

SLATEC3 (DACOSH through DS2Y) - 615

 Special double precision functions via DRJ and DRF

 Legendre form of ELLIPTIC INTEGRAL of 3rd kind

 PHI 2 -1
 P(PHI,K,N) = INT (1+N SIN (THETA)) *
 0

 2 2 -1/2
 *(1-K SIN (THETA)) D THETA

 2 2 2
 = SIN (PHI) DRF(COS (PHI), 1-K SIN (PHI),1)

 3 2 2 2
 -(N/3) SIN (PHI) DRJ(COS (PHI),1-K SIN (PHI),

 2
 1,1+N SIN (PHI))

 Bulirsch form of ELLIPTIC INTEGRAL of 3rd kind

 2 2 2
 EL3(X,KC,P) = X DRF(1,1+KC X ,1+X) +

 3 2 2 2 2
 +(1/3)(1-P) X DRJ(1,1+KC X ,1+X ,1+PX)

 2
 CEL(KC,P,A,B) = A RF(0,KC ,1) +

 2
 +(1/3)(B-PA) DRJ(0,KC ,1,P)

 Heuman's LAMBDA function

 2 2 2 1/2
 L(A,B,P) =(COS (A)SIN(B)COS(B)/(1-COS (A)SIN (B)))

 2 2 2
 *(SIN(P) DRF(COS (P),1-SIN (A) SIN (P),1)

 2 3 2 2
 +(SIN (A) SIN (P)/(3(1-COS (A) SIN (B))))

SLATEC3 (DACOSH through DS2Y) - 616

 2 2 2
 *DRJ(COS (P),1-SIN (A) SIN (P),1,1-

 2 2 2 2
 -SIN (A) SIN (P)/(1-COS (A) SIN (B))))

 (PI/2) LAMBDA0(A,B) =L(A,B,PI/2) =

 2 2 2 -1/2
 = COS (A) SIN(B) COS(B) (1-COS (A) SIN (B))

 2 2 2
 *DRF(0,COS (A),1) + (1/3) SIN (A) COS (A)

 2 2 -3/2
 *SIN(B) COS(B) (1-COS (A) SIN (B))

 2 2 2 2 2
 *DRJ(0,COS (A),1,COS (A) COS (B)/(1-COS (A) SIN (B)))

 Jacobi ZETA function

 2 2 2 1/2
 Z(B,K) = (K/3) SIN(B) COS(B) (1-K SIN (B))

 2 2 2 2
 *DRJ(0,1-K ,1,1-K SIN (B)) / DRF (0,1-K ,1)

 ***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
 elliptic integrals, ACM Transactions on Mathematical
 Software 7, 3 (September 1981), pp. 398-403.
 B. C. Carlson, Computing elliptic integrals by
 duplication, Numerische Mathematik 33, (1979),
 pp. 1-16.
 B. C. Carlson, Elliptic integrals of the first kind,
 SIAM Journal of Mathematical Analysis 8, (1977),
 pp. 231-242.
 ***ROUTINES CALLED D1MACH, DRC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Changed calls to XERMSG to standard form, and some
 editorial changes. (RWC)).
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 617

DROT

 SUBROUTINE DROT (N, DX, INCX, DY, INCY, DC, DS)
 ***BEGIN PROLOGUE DROT
 ***PURPOSE Apply a plane Givens rotation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A8
 ***TYPE DOUBLE PRECISION (SROT-S, DROT-D, CSROT-C)
 ***KEYWORDS BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION,
 LINEAR ALGEBRA, PLANE ROTATION, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DX double precision vector with N elements
 INCX storage spacing between elements of DX
 DY double precision vector with N elements
 INCY storage spacing between elements of DY
 DC D.P. element of rotation matrix
 DS D.P. element of rotation matrix

 --Output--
 DX rotated vector DX (unchanged if N .LE. 0)
 DY rotated vector DY (unchanged if N .LE. 0)

 Multiply the 2 x 2 matrix (DC DS) times the 2 x N matrix (DX**T)
 (-DS DC) (DY**T)
 where **T indicates transpose. The elements of DX are in
 DX(LX+I*INCX), I = 0 to N-1, where LX = 1 if INCX .GE. 0, else
 LX = 1+(1-N)*INCX, and similarly for DY using LY and INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 618

DROTG

 SUBROUTINE DROTG (DA, DB, DC, DS)
 ***BEGIN PROLOGUE DROTG
 ***PURPOSE Construct a plane Givens rotation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B10
 ***TYPE DOUBLE PRECISION (SROTG-S, DROTG-D, CROTG-C)
 ***KEYWORDS BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION,
 LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 DA double precision scalar
 DB double precision scalar

 --Output--
 DA double precision result R
 DB double precision result Z
 DC double precision result
 DS double precision result

 Construct the Givens transformation

 (DC DS)
 G = () , DC**2 + DS**2 = 1 ,
 (-DS DC)

 which zeros the second entry of the 2-vector (DA,DB)**T .

 The quantity R = (+/-)SQRT(DA**2 + DB**2) overwrites DA in
 storage. The value of DB is overwritten by a value Z which
 allows DC and DS to be recovered by the following algorithm.

 If Z=1 set DC=0.0 and DS=1.0
 If ABS(Z) .LT. 1 set DC=SQRT(1-Z**2) and DS=Z
 If ABS(Z) .GT. 1 set DC=1/Z and DS=SQRT(1-DC**2)

 Normally, the subprogram DROT(N,DX,INCX,DY,INCY,DC,DS) will
 next be called to apply the transformation to a 2 by N matrix.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC3 (DACOSH through DS2Y) - 619

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 620

DROTM

 SUBROUTINE DROTM (N, DX, INCX, DY, INCY, DPARAM)
 ***BEGIN PROLOGUE DROTM
 ***PURPOSE Apply a modified Givens transformation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A8
 ***TYPE DOUBLE PRECISION (SROTM-S, DROTM-D)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, MODIFIED GIVENS ROTATION, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 DX double precision vector with N elements
 INCX storage spacing between elements of DX
 DY double precision vector with N elements
 INCY storage spacing between elements of DY
 DPARAM 5-element D.P. vector. DPARAM(1) is DFLAG described below.
 Locations 2-5 of SPARAM contain elements of the
 transformation matrix H described below.

 --Output--
 DX rotated vector (unchanged if N .LE. 0)
 DY rotated vector (unchanged if N .LE. 0)

 Apply the modified Givens transformation, H, to the 2 by N matrix
 (DX**T)
 (DY**T) , where **T indicates transpose. The elements of DX are
 in DX(LX+I*INCX), I = 0 to N-1, where LX = 1 if INCX .GE. 0, else
 LX = 1+(1-N)*INCX, and similarly for DY using LY and INCY.

 With DPARAM(1)=DFLAG, H has one of the following forms:

 DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0

 (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0)
 H=() () () ()
 (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0).

 See DROTMG for a description of data storage in DPARAM.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)

SLATEC3 (DACOSH through DS2Y) - 621

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 622

DROTMG

 SUBROUTINE DROTMG (DD1, DD2, DX1, DY1, DPARAM)
 ***BEGIN PROLOGUE DROTMG
 ***PURPOSE Construct a modified Givens transformation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B10
 ***TYPE DOUBLE PRECISION (SROTMG-S, DROTMG-D)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, MODIFIED GIVENS ROTATION, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 DD1 double precision scalar
 DD2 double precision scalar
 DX1 double precision scalar
 DX2 double precision scalar
 DPARAM D.P. 5-vector. DPARAM(1)=DFLAG defined below.
 Locations 2-5 contain the rotation matrix.

 --Output--
 DD1 changed to represent the effect of the transformation
 DD2 changed to represent the effect of the transformation
 DX1 changed to represent the effect of the transformation
 DX2 unchanged

 Construct the modified Givens transformation matrix H which zeros
 the second component of the 2-vector (SQRT(DD1)*DX1,SQRT(DD2)*
 DY2)**T.
 With DPARAM(1)=DFLAG, H has one of the following forms:

 DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0

 (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0)
 H=() () () ()
 (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0).

 Locations 2-5 of DPARAM contain DH11, DH21, DH12, and DH22,
 respectively. (Values of 1.D0, -1.D0, or 0.D0 implied by the
 value of DPARAM(1) are not stored in DPARAM.)

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780301 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920316 Prologue corrected. (WRB)

SLATEC3 (DACOSH through DS2Y) - 623

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 624

DS2LT

 SUBROUTINE DS2LT (N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL)
 ***BEGIN PROLOGUE DS2LT
 ***PURPOSE Lower Triangle Preconditioner SLAP Set Up.
 Routine to store the lower triangle of a matrix stored
 in the SLAP Column format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE DOUBLE PRECISION (SS2LT-S, DS2LT-D)
 ***KEYWORDS LINEAR SYSTEM, LOWER TRIANGLE, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 INTEGER NEL, IEL(NEL), JEL(NEL)
 DOUBLE PRECISION A(NELT), EL(NEL)

 CALL DS2LT(N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of non-zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Double Precision A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 NEL :OUT Integer.
 Number of non-zeros in the lower triangle of A. Also
 corresponds to the length of the IEL, JEL, EL arrays.
 IEL :OUT Integer IEL(NEL).
 JEL :OUT Integer JEL(NEL).
 EL :OUT Double Precision EL(NEL).
 IEL, JEL, EL contain the lower triangle of the A matrix
 stored in SLAP Column format. See "Description", below,
 for more details bout the SLAP Column format.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column

SLATEC3 (DACOSH through DS2Y) - 625

 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 890404 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 626

DS2Y

 SUBROUTINE DS2Y (N, NELT, IA, JA, A, ISYM)
 ***BEGIN PROLOGUE DS2Y
 ***PURPOSE SLAP Triad to SLAP Column Format Converter.
 Routine to convert from the SLAP Triad to SLAP Column
 format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D1B9
 ***TYPE DOUBLE PRECISION (SS2Y-S, DS2Y-D)
 ***KEYWORDS LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 DOUBLE PRECISION A(NELT)

 CALL DS2Y(N, NELT, IA, JA, A, ISYM)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of non-zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Double Precision A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is used, this format is
 translated to the SLAP Column format by this routine.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.

 *Description:
 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures. If the SLAP Triad format is give
 as input then this routine transforms it into SLAP Column
 format. The way this routine tells which format is given as
 input is to look at JA(N+1). If JA(N+1) = NELT+1 then we
 have the SLAP Column format. If that equality does not hold
 then it is assumed that the IA, JA, A arrays contain the
 SLAP Triad format.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies

SLATEC3 (DACOSH through DS2Y) - 627

 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 double precision array A. In other words, for each column
 in the matrix put the diagonal entry in A. Then put in the
 other non-zero elements going down the column (except the
 diagonal) in order. The IA array holds the row index for
 each non-zero. The JA array holds the offsets into the IA,
 A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
 ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
 A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
 Note that we always have JA(N+1) = NELT+1, where N is the
 number of columns in the matrix and NELT is the number of
 non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QS2I1D
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)

SLATEC3 (DACOSH through DS2Y) - 628

 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Corrected C***FIRST EXECUTABLE STATEMENT line. (FNF)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC3 (DACOSH through DS2Y) - 629

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes. (C) Copyright 1996 The Regents of the University of California. All rights reserved.

SLATEC3 (DACOSH through DS2Y) - 630

Structural Keyword Index

Keyword Description
-------- ------------
entire This entire document.
title The name of this document.
scope Topics covered in SLATEC3.
availability Machines on which these routines run.
who Who to contact for assistance.
introduction Brief overview of SLATEC3; and
 other SLATEC documentation.
index This structural keyword index.
date The latest revision date for SLATEC3.
revisions Revision history of this document.

In addition, the name of every subroutine described in SLATEC3 is the keyword and link for retrieving
its description. Included are:

--
Routine Gams Function
Name Cat. Performed
--

DACOSH c elementary-functions, special-functions
DAI c elementary-functions, special-functions
DAIE c elementary-functions, special-functions
DASINH c elementary-functions, special-functions
DASUM d1a vector-operations
DATANH c elementary-functions, special-functions
DAVINT h2 quadrature, definite-integrals
DAWS c elementary-functions, special-functions
DAXPY d1a vector-operations
DBCG d2 linear-equations
DBESI c elementary-functions, special-functions
DBESI0 c elementary-functions, special-functions
DBESI1 c elementary-functions, special-functions
DBESJ c elementary-functions, special-functions
DBESJ0 c elementary-functions, special-functions
DBESJ1 c elementary-functions, special-functions
DBESK c elementary-functions, special-functions
DBESK0 c elementary-functions, special-functions
DBESK1 c elementary-functions, special-functions
DBESKS c elementary-functions, special-functions
DBESY c elementary-functions, special-functions
DBESY0 c elementary-functions, special-functions
DBESY1 c elementary-functions, special-functions
DBETA c elementary-functions, special-functions
DBETAI c elementary-functions, special-functions
DBFQAD e interpolation
DBHIN n data-handling
DBHIN n data-handling
DBI c elementary-functions, special-functions
DBIE c elementary-functions, special-functions
DBINOM c elementary-functions, special-functions

SLATEC3 (DACOSH through DS2Y) - 631

DBINT4 e interpolation
DBINTK e interpolation
DBNDAC d9 overdetermined-systems, least-squares
DBNDSL d9 overdetermined-systems, least-squares
DBOCLS k approximation
DBOLS k approximation
DBSI0E c elementary-functions, special-functions
DBSI1E c elementary-functions, special-functions
DBSK0E c elementary-functions, special-functions
DBSK1E c elementary-functions, special-functions
DBSKES c elementary-functions, special-functions
DBSKIN c elementary-functions, special-functions
DBSPDR e interpolation
DBSPEV e interpolation
DBSPPP e interpolation
DBSPVD e interpolation
DBSPVN e interpolation
DBSQAD e interpolation
DBVALU e interpolation
DBVSUP i1 ordinary-differential-equations
DCBRT c elementary-functions, special-functions
DCDOT d1a vector-operations
DCG d2 linear-equations
DCGN d2 linear-equations
DCGS d2 linear-equations
DCHDC linpack cholesky-operations
DCHDD linpack cholesky-operations
DCHEX linpack cholesky-operations
DCHFDV e interpolation
DCHFEV e interpolation
DCHU c elementary-functions, special-functions
DCHUD linpack cholesky-operations
DCKDER f nonlinear-equations
DCOPY d1a vector-operations
DCOPYM d1a vector-operations
DCOSDG c elementary-functions, special-functions
DCOT c elementary-functions, special-functions
DCOV k approximation
DCPPLT n data-handling
DCPPLT n data-handling
DCSEVL c elementary-functions, special-functions
DCV l statistics
DDASSL i1 ordinary-differential-equations
DDAWS c elementary-functions, special-functions
DDEABM i1 ordinary-differential-equations
DDEBDF i1 ordinary-differential-equations
DDERKF i1 ordinary-differential-equations
DDOT d1a vector-operations
DDRIV1 i1 ordinary-differential-equations
DDRIV2 i1 ordinary-differential-equations
DDRIV3 i1 ordinary-differential-equations
DE1 c elementary-functions, special-functions
DEABM i1 ordinary-differential-equations
DEBDF i1 ordinary-differential-equations
DEFC k approximation
DEI c elementary-functions, special-functions
DERF c elementary-functions, special-functions
DERFC c elementary-functions, special-functions
DERKF i1 ordinary-differential-equations
DEXINT c elementary-functions, special-functions

SLATEC3 (DACOSH through DS2Y) - 632

DEXPRL c elementary-functions, special-functions
DFAC c elementary-functions, special-functions
DFC k approximation
DFZERO f nonlinear-equations
DGAMI c elementary-functions, special-functions
DGAMIC c elementary-functions, special-functions
DGAMIT c elementary-functions, special-functions
DGAMLM c elementary-functions, special-functions
DGAMMA c elementary-functions, special-functions
DGAMR c elementary-functions, special-functions
DGAUS8 h2 quadrature, definite-integrals
DGBCO linpack general-band
DGBDI linpack general-band
DGBFA linpack general-band
DGBSL linpack general-band
DGECO linpack general
DGEDI linpack general
DGEFA linpack general
DGEFS d2 linear-equations
DGEMM d1b matrix-operations
DGEMV d1b matrix-operations
DGER d1b matrix-operations
DGESL linpack general
DGLSS d9 overdetermined-systems, least-squares
DGMRES d2 linear-equations
DGTSL linpack general-tridiagonal
DHFTI d9 overdetermined-systems, least-squares
DINTP i1 ordinary-differential-equations
DINTRV e interpolation
DIR d2 linear-equations
DLBETA c elementary-functions, special-functions
DLGAMS c elementary-functions, special-functions
DLI c elementary-functions, special-functions
DLLSIA d9 overdetermined-systems, least-squares
DLLTI2 d2 linear-equations
DLNGAM c elementary-functions, special-functions
DLNREL c elementary-functions, special-functions
DLPDOC d2 linear-equations
DLSEI k approximation
DNBCO d2 linear-equations
DNBDI d3 determinants
DNBFA d2 linear-equations
DNBFS d2 linear-equations
DNBSL d2 linear-equations
DNLS1 k approximation
DNLS1E k approximation
DNRM2 d1a vector-operations
DNSQ f nonlinear-equations
DNSQE f nonlinear-equations
DOMN d2 linear-equations
DP1VLU k approximation
DPBCO linpack hermitian-positive-definite-band
DPBDI linpack hermitian-positive-definite-band
DPBFA linpack hermitian-positive-definite-band
DPBSL linpack hermitian-positive-definite-band
DPCHBS e interpolation
DPCHCM e interpolation
DPCHFD e interpolation
DPCHFE e interpolation
DPCHIA e interpolation

SLATEC3 (DACOSH through DS2Y) - 633

DPCHIC e interpolation
DPCHID e interpolation
DPCHIM e interpolation
DPCHSP e interpolation
DPCOEF k approximation
DPFQAD e interpolation
DPLINT e interpolation
DPOCH c elementary-functions, special-functions
DPOCH1 c elementary-functions, special-functions
DPOCO linpack hermitian-positive-definite
DPODI linpack hermitian-positive-definite
DPOFA linpack hermitian-positive-definite
DPOFS d2 linear-equations
DPOLCF e interpolation
DPOLFT k approximation
DPOLVL e interpolation
DPOSL linpack hermitian-positive-definite
DPPCO linpack hermitian-positive-definite
DPPDI linpack hermitian-positive-definite
DPPERM n data-handling
DPPFA linpack hermitian-positive-definite
DPPQAD e interpolation
DPPSL linpack hermitian-positive-definite
DPPVAL e interpolation
DPSI c elementary-functions, special-functions
DPSIFN c elementary-functions, special-functions
DPSORT n data-handling
DPTSL linpack positive-definite-tridiagonal
DQAG h2 quadrature, definite-integrals
DQAGE h2 quadrature, definite-integrals
DQAGI h2 quadrature, definite-integrals
DQAGIE h2 quadrature, definite-integrals
DQAGP h2 quadrature, definite-integrals
DQAGPE h2 quadrature, definite-integrals
DQAGS h2 quadrature, definite-integrals
DQAGSE h2 quadrature, definite-integrals
DQAWC h2 quadrature, definite-integrals
DQAWCE h2 quadrature, definite-integrals
DQAWF h2 quadrature, definite-integrals
DQAWFE h2 quadrature, definite-integrals
DQAWO h2 quadrature, definite-integrals
DQAWOE h2 quadrature, definite-integrals
DQAWS h2 quadrature, definite-integrals
DQAWSE h2 quadrature, definite-integrals
DQC25C h2 quadrature, definite-integrals
DQC25F h2 quadrature, definite-integrals
DQC25S h2 quadrature, definite-integrals
DQDOTA d1a vector-operations
DQDOTI d1a vector-operations
DQK15 h2 quadrature, definite-integrals
DQK15I h2 quadrature, definite-integrals
DQK15W h2 quadrature, definite-integrals
DQK21 h2 quadrature, definite-integrals
DQK31 h2 quadrature, definite-integrals
DQK41 h2 quadrature, definite-integrals
DQK51 h2 quadrature, definite-integrals
DQK61 h2 quadrature, definite-integrals
DQMOMO h2 quadrature, definite-integrals
DQNC79 h2 quadrature, definite-integrals
DQNG h2 quadrature, definite-integrals

SLATEC3 (DACOSH through DS2Y) - 634

DQRDC d5 qr-decomposition
DQRSL d5 qr-decomposition
DRC c elementary-functions, special-functions
DRC3JJ c elementary-functions, special-functions
DRC3JM c elementary-functions, special-functions
DRC6J c elementary-functions, special-functions
DRD c elementary-functions, special-functions
DRF c elementary-functions, special-functions
DRJ c elementary-functions, special-functions
DROT d1a vector-operations
DROTG d1a vector-operations
DROTM d1a vector-operations
DROTMG d1a vector-operations
DS2LT d2 linear-equations
DS2Y d1b matrix-operations

SLATEC3 (DACOSH through DS2Y) - 635

Date and Revisions

Revision Keyword
date affected Description of changes
-------- -------- ----------------------

03Apr96 entire Text updated for SLATEC version 4.1.
 Adapted for LC (from NERSC).

31Oct91 background New keyword for document comparisons.
 loading-slatec New loading instructions for UNICOS, CSOS.
 entire Text upgraded to cover SLATEC version 4.0.

30Nov87 entire Text upgraded to cover SLATEC version 3.1.
 Page index added;
 keyword index expanded.

26Oct82 entire First edition of new writeup.

TRG (03Apr96)

UCID-19631,19632,19633
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (03Apr96) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

SLATEC3 (DACOSH through DS2Y) - 636

http://www.llnl.gov/disclaimer.html

